Neuro-fuzzy relational systems for nonlinear approximation and prediction

[1]  Hisao Ishibuchi,et al.  A simple but powerful heuristic method for generating fuzzy rules from numerical data , 1997, Fuzzy Sets Syst..

[2]  Hisao Ishibuchi,et al.  Effect of rule weights in fuzzy rule-based classification systems , 2001, IEEE Trans. Fuzzy Syst..

[3]  W. Pedrycz,et al.  An introduction to fuzzy sets : analysis and design , 1998 .

[4]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[5]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[6]  Paulo J. Costa Branco,et al.  A fuzzy relational identification algorithm and its application to predict the behaviour of a motor drive system , 2000, Fuzzy Sets Syst..

[7]  Leszek Rutkowski,et al.  Flexible neuro-fuzzy systems , 2003, IEEE Trans. Neural Networks.

[8]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[9]  Rafal Scherer,et al.  Neuro-Fuzzy Relational Systems , 2002, FSKD.

[10]  Rafał Scherer,et al.  Relational Equations Initializing Neuro-Fuzzy System , 2002 .

[11]  Magne Setnes,et al.  Fuzzy relational classifier trained by fuzzy clustering , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[12]  Detlef Nauck,et al.  Foundations Of Neuro-Fuzzy Systems , 1997 .

[13]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[14]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems , 1989 .

[15]  Ravi Kothari,et al.  Look-ahead based fuzzy decision tree induction , 2001, IEEE Trans. Fuzzy Syst..

[16]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[17]  Chuen-Tsai Sun,et al.  Neuro-fuzzy And Soft Computing: A Computational Approach To Learning And Machine Intelligence [Books in Brief] , 1997, IEEE Transactions on Neural Networks.