Modal Substructuring of Geometrically Nonlinear Finite-Element Models

The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying a series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method ...

[1]  F. Wenneker,et al.  Component Mode Synthesis for geometrically nonlinear structures , 2013 .

[2]  Jonathan E. Cooper,et al.  a Combined Modal/finite Element Analysis Technique for the Dynamic Response of a Non-Linear Beam to Harmonic Excitation , 2001 .

[3]  Brian Zuchowski Air Vehicle Integration and Technology Research (AVIATR). Delivery Order 0023: Predictive Capability for Hypersonic Structural Response and Life Prediction: Phase 2 - Detailed Design of Hypersonic Cruise Vehicle Hot-Structure , 2012 .

[4]  B. Epureanu,et al.  Next-Generation Parametric Reduced-Order Models , 2013 .

[5]  K. Watanabe,et al.  Development of Nonlinear Building Block Approach , 1988 .

[6]  Demeter G. Fertis,et al.  Mechanical And Structural Vibrations , 1995 .

[7]  R. E. Jones,et al.  Nonlinear finite elements , 1978 .

[8]  R. Clough,et al.  Dynamic analysis of large structural systems with local nonlinearities , 1979 .

[9]  Jack J. McNamara,et al.  Impact of Fluid-Thermal-Structural Coupling on Response Prediction of Hypersonic Skin Panels , 2011 .

[10]  Gaëtan Kerschen,et al.  Nonlinear Modal Analysis of a Full-Scale Aircraft , 2013 .

[11]  Wan-Suk Yoo,et al.  Dynamics of Flexible Mechanical Systems Using Vibration and Static Correction Modes , 1986 .

[12]  Joseph J. Hollkamp,et al.  Nonlinear modal models for sonic fatigue response prediction: a comparison of methods , 2005 .

[13]  Matthew S. Allen,et al.  Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections , 2010 .

[14]  M. Nash,et al.  Nonlinear structural dynamics by finite element model synthesis , 1978 .

[15]  Alexander F. Vakakis,et al.  NON-LINEAR NORMAL MODES (NNMs) AND THEIR APPLICATIONS IN VIBRATION THEORY: AN OVERVIEW , 1997 .

[16]  Matthew S. Allen,et al.  A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models , 2014 .

[17]  Jerry H. Ginsberg,et al.  Mechanical and Structural Vibrations: Theory and Applications , 2001 .

[18]  G. Verros,et al.  Ride Dynamics of Nonlinear Vehicle Models Using Component Mode Synthesis , 2002 .

[19]  Mehmet Imregun,et al.  COUPLING OF NON-LINEAR SUBSTRUCTURES USING VARIABLE MODAL PARAMETERS , 2000 .

[20]  H. D. Nelson,et al.  Nonlinear Analysis of Rotor-Bearing Systems Using Component Mode Synthesis , 1982 .

[21]  Alexander F. Vakakis,et al.  Nonlinear normal modes, Part I: A useful framework for the structural dynamicist , 2009 .

[22]  Matthew S. Allen,et al.  Relationships between Nonlinear Normal Modes and Response to Random Inputs , 2014 .

[23]  Gaëtan Kerschen,et al.  Modal testing of nonlinear vibrating structures based on nonlinear normal modes: Experimental demonstration , 2011 .

[24]  Matthew S. Allen,et al.  Substructuring with Nonlinear Reduced Order Models and Interface Reduction with Characteristic Constraint Modes , 2014 .

[25]  Joseph J. Hollkamp,et al.  Reduced-Order Models for Acoustic Response Prediction , 2011 .

[26]  C. Pierre,et al.  Characteristic Constraint Modes for Component Mode Synthesis , 2001 .

[27]  D. Rixen,et al.  General Framework for Dynamic Substructuring: History, Review and Classification of Techniques , 2008 .

[28]  D. Ewins,et al.  Nonlinear Receptance Coupling Approach Based on Describing Functions , 1996 .

[29]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[30]  Janito Vaqueiro Ferreira,et al.  Multi-harmonic Nonlinear Receptance Coupling Approach , 1997 .

[31]  Matthew S. Allen,et al.  Evaluation of Geometrically Nonlinear Reduced-Order Models with Nonlinear Normal Modes , 2015 .

[32]  Gaëtan Kerschen,et al.  Nonlinear Normal Modes of a Full-Scale Aircraft , 2011 .

[33]  Andrew J. Kurdila,et al.  『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.

[34]  Ricardo Perez,et al.  Nonintrusive Structural Dynamic Reduced Order Modeling for Large Deformations: Enhancements for Complex Structures , 2014 .

[35]  R. Macneal A hybrid method of component mode synthesis , 1971 .

[36]  Matthew S. Allen,et al.  Nonlinear Modal Substructuring of Systems with Geometric Nonlinearities , 2013 .

[37]  H. Nevzat Özgüven,et al.  Nonlinear Structural Modification and Nonlinear Coupling , 2014 .

[38]  Rob Quiroz,et al.  Air Vehicle Integration and Technology Research (AVIATR). Task Order 0023: Predictive Capability for Hypersonic Structural Response and Life Prediction: Phase 2 - Detailed Design of Hypersonic Cruise Vehicle Hot-Structure , 2012 .

[39]  Gaëtan Kerschen,et al.  Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques , 2009 .

[40]  Joseph J. Hollkamp,et al.  Reduced-order models for nonlinear response prediction: Implicit condensation and expansion , 2008 .

[41]  Erhan Budak,et al.  Iterative receptance method for determining harmonic response of structures with symmetrical non-linearities , 1993 .

[42]  Matthew Robert Brake,et al.  Evaluating Convergence of Reduced Order Models Using Nonlinear Normal Modes. , 2014 .

[43]  S. Michael Spottswood,et al.  A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures , 2013 .

[44]  S. Rubin Improved Component-Mode Representation for Structural Dynamic Analysis , 1975 .

[45]  Christophe Pierre,et al.  Component Mode Synthesis Using Nonlinear Normal Modes , 2005 .

[46]  Ricardo Perez Multiscale Reduced Order Models for the Geometrically Nonlinear Response of Complex Structures , 2012 .

[47]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .