Electronic structures and crystal field splitting of antiperovskite XNMn3 (X = 3d and 4d elements)

[1]  A. Zaoui,et al.  Frustrated Triangular Magnetic Structures of Mn3ZnN: Applications in Thermal Expansion , 2015 .

[2]  Y. Matsushita,et al.  Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn3SbN , 2014 .

[3]  N. Sun,et al.  Magnetism and Magnetocaloric Properties of Mn3Zn1-xSnxC and Mn3-xCrxZnC Compounds , 2012 .

[4]  Lihua Chu,et al.  Neutron diffraction study of unusual phase separation in the antiperovskite nitride Mn3ZnN. , 2012, Inorganic chemistry.

[5]  K. Takenaka,et al.  Phase instability of magnetic ground state in antiperovskite Mn3ZnN: Giant magnetovolume effects related to magnetic structure , 2012 .

[6]  Xiaolong Chen,et al.  Near zero temperature coefficient of resistivity in antiperovskite Mn3Ni1-xCuxN , 2011 .

[7]  Z. R. Yang,et al.  Tunable temperature coefficient of resistivity in C- and Co-doped CuNMn3 , 2011 .

[8]  N. Kaneko,et al.  Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1−xCuxN , 2011 .

[9]  H. Takagi,et al.  Gradual development of Γ5g antiferromagnetic moment in the giant negative thermal expansion material Mn3Cu1-xGexN (x~0.5) , 2010 .

[10]  H. Takagi,et al.  Conversion of magnetic structure by slight dopants in geometrically frustrated antiperovskite Mn3GaN , 2009 .

[11]  R. Sabirianov,et al.  Theory of the Piezomagnetic Effect in Mn-Based Antiperovskites , 2008 .

[12]  Rongjin Huang,et al.  Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si , 2008 .

[13]  K. Koyama,et al.  Magnetostriction in Mn3CuN , 2008 .

[14]  Koshi Takenaka,et al.  Magnetovolume effect in Mn 3 Cu 1 − x Ge x N related to the magnetic structure: Neutron powder diffraction measurements , 2008 .

[15]  H. Takagi,et al.  Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect , 2008 .

[16]  Ying Sun,et al.  Lattice contraction and magnetic and electronic transport properties of Mn3Zn1−xGexN , 2007 .

[17]  M. Imada,et al.  Antiferromagnetic Ising Model on Inverse Perovskite Lattice , 2006, cond-mat/0612016.

[18]  A. Moodenbaugh,et al.  Magnetism and the defect state in the magnetocaloric antiperovskite Mn3GaC1−δ , 2006 .

[19]  H. Takagi,et al.  Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides , 2005 .

[20]  M. Miao,et al.  Electronic structure and magnetic properties ofMn3GaNprecipitates inGa1−xMnxN , 2005 .

[21]  Y. B. Li,et al.  Magnetic, transport and magnetotransport properties of Mn3+xSn1-xC and Mn3ZnySn1-yC compounds , 2005 .

[22]  T. Tohei,et al.  Large magnetocaloric effect of Mn3−xCoxGaC , 2004 .

[23]  J. Kim,et al.  Cracks induced by magnetic ordering in the antiperovskite ZnNMn 3 , 2003 .

[24]  A. Moodenbaugh,et al.  Large magnetic entropy change in the metallic antiperovskite Mn3GaC , 2003 .

[25]  Wondong Kim,et al.  Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3 , 2001 .

[26]  H. Nakagawa,et al.  Giant magnetoresistance in the intermetallic compound Mn 3 GaC , 2000 .

[27]  J. Nørskov,et al.  Surface electronic structure and reactivity of transition and noble metals , 1997 .

[28]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[29]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  D. Fruchart,et al.  Magnetic Studies of the Metallic Perovskite-Type Compounds of Manganese , 1978 .

[32]  D. Fruchart,et al.  Structure magnetique et rotation de spin de Mn3NiN , 1971 .

[33]  Z. Ali,et al.  Magneto-electronic studies of anti-perovskites NiNMn3 and ZnNMn3 , 2014 .

[34]  R. Madar,et al.  Les deformations quadratiques T1 et T4 dans les carbures et nitrures perowskites du manganese , 1970 .