A branch‐and‐price approach for the maximum weight independent set problem

The maximum weight independent set problem (MWISP) is one of the most well-known and wellstudied problems in combinatorial optimization. This paper presents a novel approach to solve MWISP exactly by decomposing the original graph into vertex-induced sub-graphs. The approach solves MWISP for the original graph by solving MWISP on the sub-graphs in order to generate columns for a branch-and-price framework. The authors investigate different implementation techniques that can be associated with the approach and offer computational results to identify the strengths and weaknesses of each implementation technique.

[1]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[2]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[3]  W. Wilhelm A Technical Review of Column Generation in Integer Programming , 2001 .

[4]  Egon Balas,et al.  Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring , 1996, Algorithmica.

[5]  Vipin Kumar,et al.  Multilevel Algorithms for Multi-Constraint Graph Partitioning , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[6]  Panos M. Pardalos,et al.  A branch and bound algorithm for the maximum clique problem , 1992, Comput. Oper. Res..

[7]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[8]  P Willett,et al.  Use of techniques derived from graph theory to compare secondary structure motifs in proteins. , 1990, Journal of molecular biology.

[9]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[10]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[11]  Andrzej Pelc,et al.  Distributed probabilistic fault diagnosis for multiprocessor systems , 1990, [1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium.

[12]  Egon Balas,et al.  Finding a Maximum Clique in an Arbitrary Graph , 1986, SIAM J. Comput..

[13]  A. Verweij Selected applications of integer programming : a computational study , 2000 .

[14]  Jue Xue,et al.  Edge-maximal triangulated subgraphs and heuristics for the maximum clique problem , 1994, Networks.

[15]  G. Nemhauser,et al.  A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing , 1992 .

[16]  David Simchi-Levi,et al.  On the Effectiveness of Set Covering Formulations for the Vehicle Routing Problem with Time Windows , 1997, Oper. Res..

[17]  Radu Horaud,et al.  Stereo Correspondence Through Feature Grouping and Maximal Cliques , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Fabrizio Rossi,et al.  A branch-and-cut algorithm for the maximum cardinality stable set problem , 2001, Oper. Res. Lett..

[19]  P Willett,et al.  Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. , 1993, Journal of molecular biology.

[20]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[21]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[22]  D. West Introduction to Graph Theory , 1995 .

[23]  Carlo Mannino,et al.  An exact algorithm for the maximum stable set problem , 1994, Comput. Optim. Appl..

[24]  Egon Balas,et al.  Minimum Weighted Coloring of Triangulated Graphs, with Application to Maximum Weight Vertex Packing and Clique Finding in Arbitrary Graphs , 1991, SIAM J. Comput..

[25]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[26]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[27]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[28]  Laureano F. Escudero,et al.  On identifying dominant cliques , 2003, Eur. J. Oper. Res..

[29]  E.M.L. Beale,et al.  Branch and Bound Methods for Mathematical Programming Systems , 1977 .

[30]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[31]  Edward C. Sewell,et al.  A Branch and Bound Algorithm for the Stability Number of a Sparse Graph , 1998, INFORMS J. Comput..

[32]  George L. Nemhauser,et al.  Branch-and-cut for combinatorial optimization problems without auxiliary binary variables , 2001, The Knowledge Engineering Review.

[33]  Klaus Jansen,et al.  The Disjoint Cliques Problem , 1992, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[34]  K. Corrádi,et al.  A combinatorial approach for Keller's conjecture , 1990 .

[35]  Yin Zhang,et al.  Maximum stable set formulations and heuristics based on continuous optimization , 2002, Math. Program..

[36]  Karen Aardal,et al.  An Optimisation Algorithm for Maximum Independent Set with Applications in Map Labelling , 1999, ESA.

[37]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[38]  G. Nemhauser,et al.  Integer Programming , 2020 .

[39]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[40]  Eleanor J. Gardiner,et al.  Clique-detection algorithms for matching three-dimensional molecular structures. , 1997, Journal of molecular graphics & modelling.

[41]  Sven de Vries,et al.  Combinatorial Auctions: A Survey , 2003, INFORMS J. Comput..

[42]  E. Balas,et al.  Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .