Pricing American Options: A Duality Approach

We develop a new method for pricing American options. The main practical contribution of this paper is a general algorithm for constructing upper and lower bounds on the true price of the option using any approximation to the option price. We show that our bounds are tight, so that if the initial approximation is close to the true price of the option, the bounds are also guaranteed to be close. We also explicitly characterize the worst-case performance of the pricing bounds. The computation of the lower bound is straightforward and relies on simulating the suboptimal exercise strategy implied by the approximate option price. The upper bound is also computed using Monte Carlo simulation. This is made feasible by the representation of the American option price as a solution of a properly defined dual minimization problem, which is the main theoretical result of this paper. Our algorithm proves to be accurate on a set of sample problems where we price call options on the maximum and the geometric mean of a collection of stocks. These numerical results suggest that our pricing method can be successfully applied to problems of practical interest.

[1]  P. Glasserman,et al.  A Sotchastic Mesh Method for Pricing High-Dimensional American Options , 2004 .

[2]  A. Bensoussan On the theory of option pricing , 1984, Acta Applicandae Mathematicae.

[3]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[4]  D. Heath,et al.  Introduction to Mathematical Finance , 2000 .

[5]  Steven Raymar,et al.  Monte Carlo Estimation of American Call Options on the Maximum of Several Stocks , 1997 .

[6]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[7]  James A. Tilley Valuing American Options in a Path Simulation Model , 2002 .

[8]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[9]  Jérôme Barraquand,et al.  Numerical Valuation of High Dimensional Multivariate American Securities , 1995, Journal of Financial and Quantitative Analysis.

[10]  Fernando Zapatero,et al.  Monte Carlo Valuation of American Options through Computation of the Optimal Exercise Frontier , 2000, Journal of Financial and Quantitative Analysis.

[11]  John N. Tsitsiklis,et al.  Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives , 1999, IEEE Trans. Autom. Control..

[12]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[13]  P. Billingsley,et al.  Probability and Measure , 1980 .

[14]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[15]  Dawn Hunter,et al.  A stochastic mesh method for pricing high-dimensional American options , 2004 .

[16]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[17]  John R. Birge,et al.  Quasi-Monte Carlo approaches to option pricing , 1995 .

[18]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[19]  Ken Seng Tan,et al.  QUASI-MONTE CARL0 METHODS , 2003 .

[20]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[21]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[22]  K. S. Tan,et al.  Quasi-Monte Carlo Methods in Numerical Finance , 1996 .

[23]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[24]  Suran Asitha Goonatilake,et al.  Intelligent Systems for Finance and Business , 1995 .

[25]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[26]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[27]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[28]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[29]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[30]  手塚 集 Uniform random numbers : theory and practice , 1995 .

[31]  L. Rogers Monte Carlo valuation of American options , 2002 .

[32]  P. Glasserman,et al.  Enhanced Monte Carlo Estimates for American Option Prices , 1997 .

[33]  J. Detemple,et al.  A Monte Carlo Method for Optimal Portfolios , 2000 .

[34]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[35]  A. Whitehead An Introduction to Mathematics , 1949, Nature.

[36]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[37]  I. Karatzas On the pricing of American options , 1988 .

[38]  I. M. Soboĺ,et al.  Die Monte-Carlo-Methode , 1971 .

[39]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[40]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.