Galaxy detection and identification using deep learning and data augmentation
暂无分享,去创建一个
Roberto E. Gonz'alez | Roberto P. Munoz | Cristian A. Hern'andez | R. Muñoz | R. Gonz'alez | Cristian A. Hern'andez
[1] Sander Dieleman,et al. Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.
[2] Ali Farhadi,et al. YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[3] C. Lintott,et al. Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies , 2010, 1007.3265.
[4] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[5] Karl Glazebrook,et al. Finding strong lenses in CFHTLS using convolutional neural networks , 2017, 1704.02744.
[6] Bill Triggs,et al. Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[7] David W. Hogg,et al. Preparing Red‐Green‐Blue Images from CCD Data , 2003, astro-ph/0312483.
[8] Kaiming He,et al. Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).
[9] C. Lintott,et al. Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.
[10] A. Katsaggelos,et al. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science , 2016, Classical and quantum gravity.
[11] Hilo,et al. THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.
[12] Thomas H. Puzia,et al. UNVEILING A RICH SYSTEM OF FAINT DWARF GALAXIES IN THE NEXT GENERATION FORNAX SURVEY , 2015, 1510.02475.
[13] Ali Farhadi,et al. You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[14] C. Lintott,et al. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.
[15] D. Poznanski,et al. The weirdest SDSS galaxies: results from an outlier detection algorithm , 2016, 1611.07526.