Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing

This work is about diagrammatic languages, how they can be represented, and what they in turn can be used to represent. More specifically, it focuses on representations and applications of string diagrams. String diagrams are used to represent a collection of processes, depicted as "boxes" with multiple (typed) inputs and outputs, depicted as "wires". If we allow plugging input and output wires together, we can intuitively represent complex compositions of processes, formalised as morphisms in a monoidal category. [...] The first major contribution of this dissertation is the introduction of a discretised version of a string diagram called a string graph. String graphs form a partial adhesive category, so they can be manipulated using double-pushout graph rewriting. Furthermore, we show how string graphs modulo a rewrite system can be used to construct free symmetric traced and compact closed categories on a monoidal signature. The second contribution is in the application of graphical languages to quantum information theory. We use a mixture of diagrammatic and algebraic techniques to prove a new classification result for strongly complementary observables. [...] We also introduce a graphical language for multipartite entanglement and illustrate a simple graphical axiom that distinguishes the two maximally-entangled tripartite qubit states: GHZ and W. [...] The third contribution is a description of two software tools developed in part by the author to implement much of the theoretical content described here. The first tool is Quantomatic, a desktop application for building string graphs and graphical theories, as well as performing automated graph rewriting visually. The second is QuantoCoSy, which performs fully automated, model-driven theory creation using a procedure called conjecture synthesis.

[1]  Paul-André Melliès Functorial Boxes in String Diagrams , 2006, CSL.

[2]  Enrique Solano,et al.  Inductive classification of multipartite entanglement under stochastic local operations and classical communication , 2006 .

[3]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[4]  Vladimiro Sassone,et al.  Reactive systems over cospans , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[5]  Michael A. Nielsen,et al.  Majorization and the interconversion of bipartite states , 2001, Quantum Inf. Comput..

[6]  Pawel Sobocinski Deriving process congruences from reaction rules , 2004 .

[7]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[8]  H. Kreowski,et al.  Pushout-Properties: An analysis of gluing constructions for graphs , 1979 .

[9]  Aleks Kissinger,et al.  Graph Rewrite Systems for Classical Structures in Dagger−Symmetric Monoidal Categories , 2008 .

[10]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[11]  Stephen Lack An embedding theorem for adhesive categories , 2011 .

[12]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[13]  Simon Perdrix,et al.  Rewriting Measurement-Based Quantum Computations with Generalised Flow , 2010, ICALP.

[14]  S. Lane Categories for the Working Mathematician , 1971 .

[15]  L. Lamata,et al.  Operational families of entanglement classes for symmetric N-qubit States. , 2009, Physical review letters.

[16]  Ross Street,et al.  Traced monoidal categories , 1996 .

[17]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[18]  L. Lamata,et al.  Inductive entanglement classification of four qubits under stochastic local operations and classical communication , 2007 .

[19]  Aleks Kissinger,et al.  The Compositional Structure of Multipartite Quantum Entanglement , 2010, ICALP.

[20]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[22]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[23]  David Kaiser,et al.  Physics and Feynman's diagrams , 2005 .

[24]  B. Coecke,et al.  Spekkens's toy theory as a category of processes , 2011, 1108.1978.

[25]  Bill Edwards,et al.  Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.

[26]  Pierre Rannou,et al.  Diagram Rewriting for Orthogonal Matrices: A Study of Critical Peaks , 2008, RTA.

[27]  Alan Bundy,et al.  Scheme-Based Synthesis of Inductive Theories , 2010, MICAI.

[28]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[29]  Michael Atiyah,et al.  Topological quantum field theories , 1988 .

[30]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[31]  Aleks Kissinger,et al.  Proceedings Sixth Workshop on Developments in Computational Models: Causality, Computation, and Physics, Edinburgh, Scotland, 9-10th July 2010 , 2010 .

[32]  E. Solano,et al.  Inductive Entanglement Classification of Four Qubits under SLOCC , 2006 .

[33]  Hartmut Ehrig,et al.  Graph-Grammars: An Algebraic Approach , 1973, SWAT.

[34]  Samuel Mimram Sémantique des jeux asynchrones et réécriture 2-dimensionnelle. (Asynchronous Game Semantics and 2-dimensional Rewriting Systems) , 2008 .

[35]  Adan Cabello Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states , 2002 .

[36]  Hartmut Ehrig,et al.  Construction and Properties of Adhesive and Weak Adhesive High-Level Replacement Categories , 2008, Appl. Categorical Struct..

[37]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[38]  E. Kashefi,et al.  Generalized flow and determinism in measurement-based quantum computation , 2007, quant-ph/0702212.

[39]  Samson Abramsky,et al.  Physical Traces: Quantum vs. Classical Information Processing , 2002, CTCS.

[40]  Lucas Dixon,et al.  Extending Graphical Representations for Compact Closed Categories with Applications to Symbolic Quantum Computation , 2008, AISC/MKM/Calculemus.

[41]  Kentaro Honda Graphical Classification of Entangled Qutrits , 2012 .

[42]  Eric Paquette Categorical quantum computation , 2009 .

[43]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[44]  S. Abramsky No-Cloning In Categorical Quantum Mechanics , 2009, 0910.2401.

[45]  Aleks Kissinger,et al.  Exploring a Quantum Theory with Graph Rewriting and Computer Algebra , 2009, Calculemus/MKM.

[46]  E. Solano,et al.  Inductive classification of multipartite entanglement under SLOCC , 2006, quant-ph/0603243.

[47]  Arend Rensink,et al.  Nested Quantification in Graph Transformation Rules , 2006, ICGT.

[48]  A. Zeilinger,et al.  Higher-order quantum entanglement , 1992 .

[49]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[50]  Pawel Sobocinski,et al.  Adhesive and quasiadhesive categories , 2005, RAIRO Theor. Informatics Appl..

[51]  Aleks Kissinger,et al.  Open-graphs and monoidal theories† , 2010, Mathematical Structures in Computer Science.

[52]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[53]  Joachim Kock Frobenius Algebras and 2D Topological Quantum Field Theories: Frobenius algebras , 2003 .

[54]  Alan Bundy,et al.  Conjecture Synthesis for Inductive Theories , 2011, Journal of Automated Reasoning.

[55]  Pawel Sobocinski,et al.  Adhesive Categories , 2004, FoSSaCS.

[56]  Mei Chee Shum Tortile tensor categories , 1994 .

[57]  Pierre Castéran,et al.  Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.

[58]  Hartmut Ehrig,et al.  Parallelism and concurrency in high-level replacement systems , 1991, Mathematical Structures in Computer Science.

[59]  R Brauer,et al.  On the Regular Representations of Algebras. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Aleks Kissinger,et al.  The GHZ/W-calculus contains rational arithmetic , 2011, HPC.

[61]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.