Dark current modeling of MWIR type-II superlattice detectors

We report on temperature dependence characteristics of medium wavelength InAs/GaSb type-II superlattice p-i-n and nBn photodetectors in a temperature range from 77 K to 300 K. A bulk based model with an effective band gap of superlattice material has been used in modeling of the experimental data. Temperature dependence and bias dependent dark current and dynamic resistance of the devices have been analyzed in detail to investigate contributing mechanisms that limit the electrical performance of the detectors. The I-V and RA(V) characteristics of both types of detectors (p-i-n and nBn structures) are dominated by diffusion and generation-recombination currents in the zero-bias and the low-bias regions. At medium values of reverse bias, the dark current is mostly due to trap-assisted tunneling. At high values of reverse bias, the bulk band-to-band tunneling dominates. A good fitting of theoretical predictions with experimental data in a wide range of bias voltages and temperatures has been possible assuming that the position of trap-assisted tunneling level depends on temperature. The temperature dependence of trap level position can be explained by its less sensitivity on temperature changes in comparison with superlattice miniband edges. Between room temperature and 200 K the generation-recombination component and the diffusion component of carrier lifetimes are similar and have shown values about 2-10 ns. At a lower temperature the diffusion lifetime is longer and increases to about 100 ns for p-i-n structures.

[1]  M. A. Kinch,et al.  Chapter 7 Metal-Insulator-Semiconductor Infrared Detectors , 1981 .

[2]  Lucy Zheng,et al.  Developing high-performance III-V superlattice IRFPAs for defense: challenges and solutions , 2010, Defense + Commercial Sensing.

[3]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[4]  Elena Plis,et al.  Quantitative mobility spectrum analysis of carriers in GaSb/InAs/GaSb superlattice , 2008 .

[5]  Alexander R. Albrecht,et al.  Varshni parameters for InAs/GaSb strained layer superlattice infrared photodetectors , 2011 .

[6]  Elena Plis,et al.  Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate , 2010 .

[7]  Jerry R. Meyer,et al.  Analysis and performance of type-II superlattice infrared detectors , 2011 .

[8]  M. Razeghi,et al.  Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures , 2011 .

[9]  Leo Esaki,et al.  Observation of semiconductor‐semimetal transition in InAs‐GaSb superlattices , 1979 .

[10]  Elena Plis,et al.  Performance modeling of MWIR InAs/GaSb/B–Al0.2Ga0.8Sb type-II superlattice nBn detector , 2012 .

[11]  L. Esaki,et al.  A new semiconductor superlattice , 1977 .

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  Frank Rutz,et al.  Type-II superlattices: the Fraunhofer perspective , 2010, Defense + Commercial Sensing.

[14]  Philippe Christol,et al.  Temperature dependence performances of InAs/GaSb superlattice photodiode , 2011 .

[15]  Alexander Soibel,et al.  Dark current analysis of InAs/GaSb superlattices at low temperatures , 2009 .

[16]  Antoni Rogalski,et al.  High-Operating-Temperature Infrared Photodetectors , 2007 .

[17]  Shen,et al.  Deep levels in type-II InAs/GaSb superlattices. , 1992, Physical review. B, Condensed matter.

[18]  Frank Fuchs,et al.  Investigation of trap-assisted tunneling current in InAs/(GaIn)Sb superlattice long-wavelength photodiodes , 2002 .

[19]  Alexander Soibel,et al.  Type-II Superlattice Infrared Detectors , 2011 .

[20]  William C. Mitchel,et al.  Transport studies of MBE-grown InAs/GaSb superlattices , 2010 .

[21]  S. Krishna,et al.  InAs/GaSb Superlattice Detectors Operating at Room Temperature , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Antoni Rogalski,et al.  New material systems for third generation infrared detectors , 2009, International Conference on Correlation Optics.

[23]  Antoni Rogalski,et al.  InAs/GaInSb superlattices as a promising material system for third generation infrared detectors , 2005, Other Conferences.

[24]  Cory J. Hill,et al.  Characterization of LWIR diodes on InAs/GaSb Type-II superlattice material , 2009 .

[25]  John D. Dow,et al.  Deep levels in superlattices , 1990 .

[26]  Jeffrey H. Warner,et al.  Controlling dark current in type-II superlattice photodiodes , 2009 .