Bounded Model Checking of Hybrid Systems for Control

A bounded LTL model checking algorithm to check the properties of hybrid systems is presented. The proposed algorithm can also be applied to control systems as counterexamples of a negated goal contain information to achieve the original goal. This approach is different than existing abstraction-based techniques. While many of the latter approaches build a control strategy after partitioning a state space, the proposed approach constructs a necessary set of constraints and computes a possibly optimal control input on the fly. The bounded LTL semantics of this paper is more expressive than those of bounded reachability: in addition to the finite computation paths that the reachability checkers can handle, the proposed algorithm can check infinite paths ending with a loop. Furthermore, the LTL operators provide a convenient and expressive way of writing complicated specifications.

[1]  K. Lim,et al.  Generalized Predictive Control of , 2022 .

[2]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[3]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[4]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[5]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[6]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[7]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[8]  Alessandro Abate,et al.  Bisimilar symbolic models for stochastic control systems without state-space discretization , 2014, HSCC.

[9]  Paulo Tabuada,et al.  Linear Time Logic Control of Discrete-Time Linear Systems , 2006, IEEE Transactions on Automatic Control.

[10]  Dejan Nickovic,et al.  Monitoring Temporal Properties of Continuous Signals , 2004, FORMATS/FTRTFT.

[11]  Leon Shargel,et al.  Applied biopharmaceutics and pharmacokinetics , 1980 .

[12]  Ufuk Topcu,et al.  Receding horizon temporal logic planning for dynamical systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[13]  Gul A. Agha,et al.  LTLC: Linear Temporal Logic for Control , 2008, HSCC.

[14]  Ivana Cerná,et al.  Relating Hierarchy of Temporal Properties to Model Checking , 2003, MFCS.

[15]  Riccardo Scattolini,et al.  Constrained receding-horizon predictive control , 1991 .

[16]  Hadas Kress-Gazit,et al.  Temporal-Logic-Based Reactive Mission and Motion Planning , 2009, IEEE Transactions on Robotics.

[17]  Gul A. Agha,et al.  Linear Inequality LTL (iLTL): A Model Checker for Discrete Time Markov Chains , 2004, ICFEM.

[18]  Gul A. Agha,et al.  Verifying the Evolution of Probability Distributions Governed by a DTMC , 2011, IEEE Transactions on Software Engineering.

[19]  Stephan Merz,et al.  Model Checking , 2000 .

[20]  L. M. Sonneborn,et al.  The Bang-Bang Principle for Linear Control Systems , 1964 .

[21]  François Fages,et al.  On temporal logic constraint solving for analyzing numerical data time series , 2008, Theor. Comput. Sci..

[22]  Paulo Tabuada,et al.  Approximately Bisimilar Symbolic Models for Incrementally Stable Switched Systems , 2008, IEEE Transactions on Automatic Control.

[23]  Martin Fränzle,et al.  HySAT: An efficient proof engine for bounded model checking of hybrid systems , 2007, Formal Methods Syst. Des..

[24]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[25]  You Li,et al.  BACH : Bounded ReAchability CHecker for Linear Hybrid Automata , 2008, 2008 Formal Methods in Computer-Aided Design.

[26]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[27]  Ralph P. Grimaldi,et al.  Discrete and Combinatorial Mathematics: An Applied Introduction , 1998 .

[28]  Calin Belta,et al.  A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications , 2008, IEEE Transactions on Automatic Control.

[29]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[30]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[31]  Orna Kupferman,et al.  Model Checking of Safety Properties , 1999, CAV.

[32]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[33]  Alberto Griggio,et al.  The MathSAT5 SMT Solver , 2013, TACAS.

[34]  Eunhee Kim,et al.  Specification and verification of pharmacokinetic models. , 2010, Advances in experimental medicine and biology.

[35]  Ufuk Topcu,et al.  Synthesis of Reactive Switching Protocols From Temporal Logic Specifications , 2013, IEEE Transactions on Automatic Control.

[36]  A Silvers,et al.  Derivation of a three compartment model describing disappearance of plasma insulin-131-I in man. , 1969, The Journal of clinical investigation.

[37]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[38]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[39]  Calin Belta,et al.  Dealing with Nondeterminism in Symbolic Control , 2008, HSCC.