Mitochondria Restrict Growth of the Intracellular Parasite Toxoplasma gondii by Limiting Its Uptake of Fatty Acids.

[1]  J. Blackwell,et al.  Toxoplasma gondii Infection Is Associated with Mitochondrial Dysfunction in-Vitro , 2017, Front. Cell. Infect. Microbiol..

[2]  J. Olivo-Marin,et al.  Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. , 2017, Cell host & microbe.

[3]  R. Zoncu,et al.  DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy. , 2017, Developmental cell.

[4]  I. Coppens,et al.  Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii , 2017, PLoS pathogens.

[5]  E. Venturini,et al.  Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells In Vivo. , 2017, Cancer cell.

[6]  M. Fraunholz,et al.  Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission , 2017, The Journal of cell biology.

[7]  Perle Latré de Laté,et al.  Apicomplexan autophagy and modulation of autophagy in parasite-infected host cells , 2017, Biomedical journal.

[8]  Luca Scorrano,et al.  Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether , 2016, Proceedings of the National Academy of Sciences.

[9]  Richard D Hayward,et al.  Membrane contact sites between pathogen-containing compartments and host organelles. , 2016, Biochimica et biophysica acta.

[10]  R. Menna-Barreto,et al.  The morphological analysis of autophagy in primary skeletal muscle cells infected with Toxoplasma gondii , 2016, Parasitology Research.

[11]  J. Enninga,et al.  Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection , 2016, PloS one.

[12]  L. Scorrano,et al.  Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. , 2016, Annual review of physiology.

[13]  M. McConville,et al.  The intracellular parasite Toxoplasma gondii depends on the synthesis of long‐chain and very long‐chain unsaturated fatty acids not supplied by the host cell , 2015, Molecular microbiology.

[14]  T. Kawula,et al.  The role of autophagy in intracellular pathogen nutrient acquisition , 2015, Front. Cell. Infect. Microbiol..

[15]  D. Bumann,et al.  Host Delivery of Favorite Meals for Intracellular Pathogens , 2015, PLoS pathogens.

[16]  S. Gross,et al.  AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation , 2015, Nature Communications.

[17]  Jens Nielsen,et al.  Metabolic Needs and Capabilities of Toxoplasma gondii through Combined Computational and Experimental Analysis , 2015, PLoS Comput. Biol..

[18]  J. Lippincott-Schwartz,et al.  Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. , 2015, Developmental cell.

[19]  L. Scorrano,et al.  Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. , 2015, Cell metabolism.

[20]  David S. Park,et al.  OPA1‐dependent cristae modulation is essential for cellular adaptation to metabolic demand , 2014, The EMBO journal.

[21]  J. Mekalanos,et al.  Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. , 2014, Cell host & microbe.

[22]  J. Naggert,et al.  GLUT4 Defects in Adipose Tissue Are Early Signs of Metabolic Alterations in Alms1GT/GT, a Mouse Model for Obesity and Insulin Resistance , 2014, PloS one.

[23]  V. G. Monteiro,et al.  Culture of mouse peritoneal macrophages with mouse serum induces lipid bodies that associate with the parasitophorous vacuole and decrease their microbicidal capacity against Toxoplasma gondii , 2014, Memorias do Instituto Oswaldo Cruz.

[24]  M. Wakelam,et al.  Lipid droplet formation in response to oleic acid in Huh-7 cells is mediated by the fatty acid receptor FFAR4 , 2014, Journal of Cell Science.

[25]  Yu Cai,et al.  Autophagy activated by Toxoplasma gondii infection in turn facilitates Toxoplasma gondii proliferation , 2014, Parasitology Research.

[26]  Sarah E. Ewald,et al.  Toxoplasma Effector MAF1 Mediates Recruitment of Host Mitochondria and Impacts the Host Response , 2014, PLoS biology.

[27]  Aurélien Rizk,et al.  Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh , 2014, Nature Protocols.

[28]  D. Bhella,et al.  Strategies for maximizing ATP supply in the microsporidian Encephalitozoon cuniculi: direct binding of mitochondria to the parasitophorous vacuole and clustering of the mitochondrial porin VDAC , 2013, Cellular microbiology.

[29]  Robert V Farese,et al.  Cellular fatty acid metabolism and cancer. , 2013, Cell metabolism.

[30]  V. Carruthers Faculty Opinions recommendation of Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. , 2013 .

[31]  A. Cardona,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[32]  Robert V Farese,et al.  Lipid droplets and cellular lipid metabolism. , 2012, Annual review of biochemistry.

[33]  A. Kastaniotis,et al.  Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii* , 2011, The Journal of Biological Chemistry.

[34]  R. Vance,et al.  Innate immune recognition of bacterial ligands by NAIPs dictates inflammasome specificity , 2011, Nature.

[35]  J. Boothroyd,et al.  Evidence for Host Cells as the Major Contributor of Lipids in the Intravacuolar Network of Toxoplasma-Infected Cells , 2011, Eukaryotic Cell.

[36]  J. Lippincott-Schwartz,et al.  Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation , 2011, Proceedings of the National Academy of Sciences.

[37]  Robert V Farese,et al.  DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes[S] , 2011, Journal of Lipid Research.

[38]  V. Deretic Autophagy in immunity and cell‐autonomous defense against intracellular microbes , 2011, Immunological reviews.

[39]  P. Cossart,et al.  Listeria monocytogenes transiently alters mitochondrial dynamics during infection , 2011, Proceedings of the National Academy of Sciences.

[40]  L. Scorrano,et al.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability , 2011, Nature Cell Biology.

[41]  M. Yoneyama,et al.  Virus-Infection or 5′ppp-RNA Activates Antiviral Signal through Redistribution of IPS-1 Mediated by MFN1 , 2010, PLoS pathogens.

[42]  H. Blau,et al.  Toxoplasma secreting Cre recombinase for analysis of host-parasite interactions , 2010, Nature Methods.

[43]  Robert V Farese,et al.  Lipid Droplets Finally Get a Little R-E-S-P-E-C-T , 2009, Cell.

[44]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[45]  L. Weiss,et al.  Host Cell Autophagy Is Induced by Toxoplasma gondii and Contributes to Parasite Growth* , 2009, Journal of Biological Chemistry.

[46]  J. Emile,et al.  Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence , 2008, PLoS pathogens.

[47]  R. Valdivia,et al.  Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole , 2008, Proceedings of the National Academy of Sciences.

[48]  S. Yamaguchi,et al.  Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase. , 2006, Biological & pharmaceutical bulletin.

[49]  B. Striepen,et al.  CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. , 2006, The Journal of clinical investigation.

[50]  Ralf Bartenschlager,et al.  Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus , 2005, Nature.

[51]  Osamu Takeuchi,et al.  IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction , 2005, Nature Immunology.

[52]  Z. Zhai,et al.  VISA Is an Adapter Protein Required for Virus-Triggered IFN-β Signaling , 2005 .

[53]  Zhijian J. Chen,et al.  Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3 , 2005, Cell.

[54]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[55]  L. Scorrano,et al.  OPA1 requires mitofusin 1 to promote mitochondrial fusion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Gigley,et al.  Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation. , 2004, International journal for parasitology.

[57]  T. Willson,et al.  Novel selective small molecule agonists for peroxisome proliferator-activated receptor δ (PPARδ)—synthesis and biological activity , 2003 .

[58]  Erik E. Griffin,et al.  Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development , 2003, The Journal of cell biology.

[59]  L. Sibley,et al.  Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. , 2002, Journal of cell science.

[60]  D. Klionsky,et al.  Autophagy in the Eukaryotic Cell , 2002, Eukaryotic Cell.

[61]  Robert V Farese,et al.  Cholesterol Esterification by Host and Parasite Is Essential for Optimal Proliferation of Toxoplasma gondii * , 2001, The Journal of Biological Chemistry.

[62]  J. Boothroyd,et al.  Lytic Cycle of Toxoplasma gondii , 2000, Microbiology and Molecular Biology Reviews.

[63]  I. Coppens,et al.  Toxoplasma gondii Exploits Host Low-Density Lipoprotein Receptor-Mediated Endocytosis for Cholesterol Acquisition , 2000, The Journal of cell biology.

[64]  M. S. McClain,et al.  The role of Legionella pneumophila-infected Hartmannella vermiformis as an infectious particle in a murine model of Legionnaire's disease , 1997, Infection and immunity.

[65]  K. Joiner,et al.  Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. , 1997, Journal of cell science.

[66]  C. Chastang,et al.  In vitro effects of folate inhibitors on Toxoplasma gondii , 1989, Antimicrobial Agents and Chemotherapy.

[67]  P. Olley,et al.  Etomoxir, a Carnitine Palmitoyltransferase I Inhibitor, Protects Hearts From Fatty Acid‐Induced Ischemic Injury Independent of Changes in Long Chain Acylcarnitine , 1988, Circulation research.

[68]  M. Horwitz Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes , 1983, The Journal of experimental medicine.

[69]  J. G. Hirsch,et al.  THE INTERACTION BETWEEN TOXOPLASMA GONDII AND MAMMALIAN CELLS , 1972, The Journal of experimental medicine.

[70]  R. Friis Interaction of L Cells and Chlamydia psittaci: Entry of the Parasite and Host Responses to Its Development , 1972, Journal of bacteriology.