Towards quantum superpositions of a mirror

We propose an experiment for creating quantum superposition states involving of the order of 10(14) atoms via the interaction of a single photon with a tiny mirror. This mirror, mounted on a high-quality mechanical oscillator, is part of a high-finesse optical cavity which forms one arm of a Michelson interferometer. By observing the interference of the photon only, one can study the creation and decoherence of superpositions involving the mirror. A detailed analysis of the requirements shows that the experiment is within reach using a combination of state-of-the-art technologies.

[1]  D. Raine General relativity , 1980, Nature.

[2]  D. Mounce,et al.  Magnetic resonance force microscopy , 2005, IEEE Instrumentation & Measurement Magazine.

[3]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[4]  S. Adler,et al.  Towards quantum superpositions of a mirror: an exact open systems analysis—calculational details , 2004, quant-ph/0407084.

[5]  S. Adler,et al.  Towards Quantum Superpositions of a Mirror: Stochastic Collapse Analysis , 2004 .

[6]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[7]  A. Zeilinger,et al.  Decoherence of matter waves by thermal emission of radiation , 2004, Nature.

[8]  R. Alicki,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[9]  Ajay P. Malshe,et al.  Young's modulus measurements of silicon nanostructures using a scanning probe system: a non-destructive evaluation approach , 2003 .

[10]  D. A. Kurdyukov,et al.  Ultrafast optical switching in three-dimensional photonic crystals. , 2003, Physical review letters.

[11]  A. Cleland,et al.  Superconducting qubit storage and entanglement with nanomechanical resonators. , 2003, Physical review letters.

[12]  J. Dunningham,et al.  Measurement-Induced Relative-Position Localization Through Entanglement , 2003, Science.

[13]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[14]  S. Habib,et al.  Feedback cooling of a nanomechanical resonator , 2003, cond-mat/0302529.

[15]  F. Haake,et al.  Universality of decoherence for macroscopic quantum superpositions , 2003 .

[16]  V. Giovannetti,et al.  Stationary entanglement between macroscopic mechanical oscillators , 2002, quant-ph/0209014.

[17]  F. Haake,et al.  Decoherence scenarios from microscopic to macroscopic superpositions , 2002, quant-ph/0205108.

[18]  G. Rempe,et al.  Feedback on the motion of a single atom in an optical cavity. , 2002, Physical review letters.

[19]  Calvin Shipbaugh,et al.  Space Weapons, Earth Wars , 2002 .

[20]  S. Louie,et al.  Ab Initio calculation of band gap renormalization in highly excited GaAs , 2002, cond-mat/0401407.

[21]  Robert E. Scholten,et al.  Frequency noise characterisation of narrow linewidth diode lasers , 2002 .

[22]  M. Blencowe,et al.  Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. , 2001, Physical review letters.

[23]  S. Mancini,et al.  Mirror quiescence and high-sensitivity position measurements with feedback , 2001, quant-ph/0111067.

[24]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[25]  A. Heidmann,et al.  Quantum limits of cold damping with optomechanical coupling , 2001, quant-ph/0107138.

[26]  F. Schmidt-Kaler,et al.  Optical decay from a Fabry-Perot cavity faster than the decay time , 2001, physics/0107038.

[27]  G. S. Summy,et al.  Prospects for atom interferometry , 2001 .

[28]  Jun Ye,et al.  Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity , 2001, quant-ph/0101103.

[29]  M. Blencowe,et al.  Possibility of an electromechanical which-path interferometer , 2001, cond-mat/0101157.

[30]  Masayoshi Esashi,et al.  Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers , 2000 .

[31]  J. Tuoriniemi,et al.  Nuclear magnetism and superconductivity in rhodium , 2000 .

[32]  C. Hood Real-time measurement and trapping of single atoms by single photons , 2000 .

[33]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[34]  T. Briant,et al.  Full mechanical characterization of a cold damped mirror , 2000, quant-ph/0008004.

[35]  N. Moussy,et al.  A very low temperature scanning tunneling microscope for the local spectroscopy of mesoscopic structures , 2000, cond-mat/0007128.

[36]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[37]  O. V. Lounasmaa,et al.  A Versatile Nuclear Demagnetization Cryostat for Ultralow Temperature Research , 2000 .

[38]  S. Rowan,et al.  Gravitational Wave Detection by Interferometry (Ground and Space) , 2000, Living reviews in relativity.

[39]  Juha Tuoriniemi,et al.  Nuclear cooling and spin properties of rhodium down to picokelvin temperatures , 2000 .

[40]  R. Penrose WAVEFUNCTION COLLAPSE AS A REAL GRAVITATIONAL EFFECT , 2000 .

[41]  Athanassios S. Fokas,et al.  Mathematical Physics 2000 , 2000 .

[42]  T. Kenny,et al.  Quality factors in micron- and submicron-thick cantilevers , 2000, Journal of Microelectromechanical Systems.

[43]  Anton Zeilinger,et al.  Wave–particle duality of C60 molecules , 1999, Nature.

[44]  A. Venugopalan Pointer states via Decoherence in a Quantum Measurement , 1999, quant-ph/9909005.

[45]  H. Ohno,et al.  INTEGRATED MICROMECHANICAL CANTILEVER MAGNETOMETRY OF GA1-XMNXAS , 1999 .

[46]  S. Walt,et al.  Rigor or Rigor Mortis? Rational Choice and Security Studies , 1999, International Security.

[47]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[48]  P. Cohadon,et al.  Cooling of a Mirror by Radiation Pressure , 1999, quant-ph/9903094.

[49]  Ilkka Tittonen,et al.  Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits , 1999 .

[50]  J. Price,et al.  Taber vibration isolator for vacuum and cryogenic applications , 1998, physics/9812027.

[51]  S. Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998, quant-ph/9802034.

[52]  P. Knight,et al.  A Quantum Optical Scheme to Probe the Decoherence of a Macroscopic Object , 1997, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[53]  Fred Barlow,et al.  Thin Film Technology Handbook , 1997 .

[54]  Philippe Gondoin,et al.  Optical testing of XMM flight model mirror module I and II at the vertical EUV/X facility , 1997, Optics & Photonics.

[55]  Kenneth E. Goodson,et al.  PHONON-BOUNDARY SCATTERING IN THIN SILICON LAYERS , 1997 .

[56]  D. Deppe,et al.  Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers , 1997 .

[57]  O. V. Lounasmaa,et al.  Nuclear magnetic ordering in simple metals at positive and negative nanokelvin temperatures , 1997 .

[58]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[59]  S. Mancini,et al.  Ponderomotive control of quantum macroscopic coherence , 1996, quant-ph/9612005.

[60]  C. Chang-Hasnain,et al.  High performance micromechanical tunable verticle cavity surface emitting laser , 1996 .

[61]  J. Garbini,et al.  Optimal control of force microscope cantilevers. II. Magnetic coupling implementation , 1996 .

[62]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[63]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[64]  Home,et al.  DNA molecular cousin of Schrödinger's cat: A curious example of quantum measurement. , 1996, Physical review letters.

[65]  Zurek,et al.  Decoherence of quantum fields: Pointer states and predictability. , 1995, Physical review. D, Particles and fields.

[66]  Shmuel Nussinov,et al.  Constraint on collapse models by limit on spontaneous x-ray emission in Ge , 1995 .

[67]  Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[68]  Bowden,et al.  Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. , 1994, Physical review letters.

[69]  Mancini,et al.  Quantum noise reduction by radiation pressure. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[70]  Jerome Mertz,et al.  Regulation of a microcantilever response by force feedback , 1993 .

[71]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[72]  Mansoor Sheik-Bahae,et al.  Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe , 1992 .

[73]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[74]  Haas,et al.  Thousandfold improvement in the measured antiproton mass. , 1990, Physical review letters.

[75]  Diósi,et al.  Models for universal reduction of macroscopic quantum fluctuations. , 1989, Physical review. A, General physics.

[76]  Grassi,et al.  Continuous-spontaneous-reduction model involving gravity. , 1989, Physical review. A, Atomic, molecular, and optical physics.

[77]  Zurek,et al.  Reduction of a wave packet in quantum Brownian motion. , 1989, Physical review. D, Particles and fields.

[78]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[79]  T. Rhodes,et al.  Optimization procedure for the cooling of liquid 3He by adiabatic demagnetization of praseodymium nickel , 1985 .

[80]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[81]  D. Miller,et al.  Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures , 1982 .

[82]  Tingye Li,et al.  Computation of optical resonator modes by the method of resonance excitation , 1968 .

[83]  H. Kogelnik,et al.  Laser beams and resonators. , 1966, Applied optics.

[84]  Tingye Li,et al.  Diffraction loss and selection of modes in maser resonators with circular mirrors , 1965 .

[85]  J. Leggett,et al.  Qubits, Cbits, Decoherence, Quantum Measurement and Environment , 2002 .

[86]  Richard L. Garwin,et al.  Space weapons or space arms control , 2001 .

[87]  J. Raimond,et al.  Atoms and Cavities: The Birth of a Schrödinger Cat of the Radiation Field , 1999 .

[88]  C. Chang-Hasnain,et al.  Top-emitting micromechanical VCSEL with a 31.6-nm tuning range , 1998, IEEE Photonics Technology Letters.

[89]  I. Stamatescu,et al.  BOOK REVIEW: Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[90]  F. Khalili,et al.  Quantum nondemolition measurements: the route from toys to tools , 1996 .

[91]  Law Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[92]  G. Gurzadyan,et al.  Handbook of nonlinear optical crystals , 1991 .

[93]  V. Rich Personal communication , 1989, Nature.

[94]  E. Velikhov Weaponisation of Space , 1987 .

[95]  F. Károlyházy,et al.  On the possible role of gravity in the reduction of the wave function , 1986 .

[96]  Milburn,et al.  Effect of dissipation on quantum coherence. , 1985, Physical review. A, General physics.

[97]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[98]  J. Taché Experimental determination of diffraction losses in a near-hemispherical resonator , 1984 .

[99]  H. Zeh On the interpretation of measurement in quantum theory , 1970 .

[100]  A. Wightman,et al.  Mathematical Physics. , 1930, Nature.