Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere

We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption—V is of the same order as $$2\log \Vert x\Vert $$2log‖x‖ near infinity—considered by Hardy and Kuijlaars [J Approx Theory 170:44–58, 2013]. We prove an asymptotic expansion, as the number n of points goes to infinity, for the minimum of this Hamiltonian using the gamma-convergence method of Sandier and Serfaty [Ann Probab 43(4):2026–2083, 2015]. We show that the asymptotic expansion as $$n\rightarrow +\infty $$n→+∞ of the minimal logarithmic energy of n points on the unit sphere in $$\mathbb {R}^3$$R3 has a term of order n, thus proving a long-standing conjecture of Rakhmanov et al. [Math Res Lett 1:647–662, 1994]. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31–61, 2012] about the value of this term and the conjecture of Sandier and Serfaty [Commun Math Phys. 313(3):635–743, 2012] about the minimality of the triangular lattice for a “renormalized energy” W among configurations of fixed asymptotic density.

[1]  Arno B. J. Kuijlaars,et al.  Weakly admissible vector equilibrium problems , 2011, J. Approx. Theory.

[2]  Sylvia Serfaty,et al.  Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies , 2013, 1307.4623.

[3]  A. Hardy A note on large deviations for 2D Coulomb gas with weakly confining potential , 2012, 1202.2809.

[4]  Renaud Coulangeon,et al.  Spherical designs and zeta functions of lattices , 2006 .

[5]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[6]  Otto Frostman Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .

[7]  T. Bloom,et al.  Logarithmic Potential Theory and Large Deviation , 2014 .

[8]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[9]  Y. Mizuta Continuity properties of Riesz potentials and boundary limits of Beppo Levi functions. , 1988 .

[10]  Height of flat tori , 1997 .

[11]  Hugh L. Montgomery,et al.  Minimal theta functions , 1988, Glasgow Mathematical Journal.

[12]  S. Smale Mathematical problems for the next century , 1998 .

[13]  Thomas Lebl'e A Uniqueness Result for Minimizers of the 1D Log-gas Renormalized Energy , 2014, 1408.2283.

[14]  M. E. Becker Multiparameter Groups of Measure-Preserving Transformations: A Simple Proof of Wiener's Ergodic Theorem , 1981 .

[15]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[16]  S. Chowla,et al.  On Epstein's Zeta Function (I). , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Serfaty,et al.  2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.

[18]  Edward B. Saff,et al.  Electrons on the Sphere , 1995 .

[19]  Gerold Wagner,et al.  On means of distances on the surface of a sphere. II. (Upper bounds) , 1990 .

[20]  Renaud Coulangeon,et al.  Energy Minimization, Periodic Sets and Spherical Designs , 2010, 1005.4373.

[21]  Peter Sarnak,et al.  Extremals of determinants of Laplacians , 1988 .

[22]  Johann S. Brauchart,et al.  Riesz External Field Problems on the Hypersphere and Optimal Point Separation , 2013, 1310.2765.

[23]  C. Bachoc,et al.  Modular Forms, Lattices and Spherical Designs , 2000 .

[24]  水田 義弘 Potential theory in Euclidean spaces , 1996 .

[25]  Spherical designs and heights of Euclidean lattices , 2014, 1401.2891.

[26]  Johann S. Brauchart,et al.  Distributing many points on spheres: Minimal energy and designs , 2014, J. Complex..

[27]  E. Saff,et al.  The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere , 2012, 1202.4037.

[28]  Johann S. Brauchart,et al.  Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..

[29]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[30]  Sylvia Serfaty,et al.  From the Ginzburg-Landau Model to Vortex Lattice Problems , 2010, 1011.4617.

[31]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[32]  Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement , 2010, 1011.4616.

[33]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[34]  Peter D Dragnev,et al.  On the Separation of Logarithmic Points on the Sphere , 2002 .

[35]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .