Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere
暂无分享,去创建一个
[1] Arno B. J. Kuijlaars,et al. Weakly admissible vector equilibrium problems , 2011, J. Approx. Theory.
[2] Sylvia Serfaty,et al. Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies , 2013, 1307.4623.
[3] A. Hardy. A note on large deviations for 2D Coulomb gas with weakly confining potential , 2012, 1202.2809.
[4] Renaud Coulangeon,et al. Spherical designs and zeta functions of lattices , 2006 .
[5] J. Seidel,et al. Spherical codes and designs , 1977 .
[6] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .
[7] T. Bloom,et al. Logarithmic Potential Theory and Large Deviation , 2014 .
[8] E. Saff,et al. Asymptotics for minimal discrete energy on the sphere , 1995 .
[9] Y. Mizuta. Continuity properties of Riesz potentials and boundary limits of Beppo Levi functions. , 1988 .
[10] Height of flat tori , 1997 .
[11] Hugh L. Montgomery,et al. Minimal theta functions , 1988, Glasgow Mathematical Journal.
[12] S. Smale. Mathematical problems for the next century , 1998 .
[13] Thomas Lebl'e. A Uniqueness Result for Minimizers of the 1D Log-gas Renormalized Energy , 2014, 1408.2283.
[14] M. E. Becker. Multiparameter Groups of Measure-Preserving Transformations: A Simple Proof of Wiener's Ergodic Theorem , 1981 .
[15] Andrea Braides. Gamma-Convergence for Beginners , 2002 .
[16] S. Chowla,et al. On Epstein's Zeta Function (I). , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[17] S. Serfaty,et al. 2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.
[18] Edward B. Saff,et al. Electrons on the Sphere , 1995 .
[19] Gerold Wagner,et al. On means of distances on the surface of a sphere. II. (Upper bounds) , 1990 .
[20] Renaud Coulangeon,et al. Energy Minimization, Periodic Sets and Spherical Designs , 2010, 1005.4373.
[21] Peter Sarnak,et al. Extremals of determinants of Laplacians , 1988 .
[22] Johann S. Brauchart,et al. Riesz External Field Problems on the Hypersphere and Optimal Point Separation , 2013, 1310.2765.
[23] C. Bachoc,et al. Modular Forms, Lattices and Spherical Designs , 2000 .
[24] 水田 義弘. Potential theory in Euclidean spaces , 1996 .
[25] Spherical designs and heights of Euclidean lattices , 2014, 1401.2891.
[26] Johann S. Brauchart,et al. Distributing many points on spheres: Minimal energy and designs , 2014, J. Complex..
[27] E. Saff,et al. The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere , 2012, 1202.4037.
[28] Johann S. Brauchart,et al. Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..
[29] E. Saff,et al. Minimal Discrete Energy on the Sphere , 1994 .
[30] Sylvia Serfaty,et al. From the Ginzburg-Landau Model to Vortex Lattice Problems , 2010, 1011.4617.
[31] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[32] Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement , 2010, 1011.4616.
[33] E. Saff,et al. Distributing many points on a sphere , 1997 .
[34] Peter D Dragnev,et al. On the Separation of Logarithmic Points on the Sphere , 2002 .
[35] Gianni Dal Maso,et al. An Introduction to [gamma]-convergence , 1993 .