MTE-NODDI: Multi-TE NODDI for disentangling non-T2-weighted signal fractions from compartment-specific T2 relaxation times

[1]  Dan Benjamini,et al.  Retaining information from multidimensional correlation MRI using a spectral regions of interest generator , 2020, Scientific Reports.

[2]  Catherine Lebel,et al.  A multiparametric analysis of white matter maturation during late childhood and adolescence , 2019, Human brain mapping.

[3]  Zhiwei Li,et al.  Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. , 2019, Medical physics.

[4]  Hongyan Ni,et al.  Microstructural White Matter Alterations in Mild Cognitive Impairment and Alzheimer’s Disease , 2019, Clinical Neuroradiology.

[5]  Hui Zhang,et al.  Optimizing the intrinsic parallel diffusivity in NODDI: An extensive empirical evaluation , 2019, bioRxiv.

[6]  M. Leboyer,et al.  Higher in vivo Cortical Intracellular Volume Fraction Associated with Lithium Therapy in Bipolar Disorder: A Multicenter NODDI Study , 2019, Psychotherapy and Psychosomatics.

[7]  Emilie T. McKinnon,et al.  Measuring intra‐axonal T2 in white matter with direction‐averaged diffusion MRI , 2018, Magnetic resonance in medicine.

[8]  Ganesh Adluru,et al.  Simultaneous NODDI and GFA parameter map generation from subsampled q‐space imaging using deep learning , 2018, Magnetic resonance in medicine.

[9]  C. Westin,et al.  Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling , 2018, Human brain mapping.

[10]  Zhiwei Li,et al.  Fast and Robust Diffusion Kurtosis Parametric Mapping Using a Three-Dimensional Convolutional Neural Network , 2019, IEEE Access.

[11]  Thorsten Feiweier,et al.  Effect of myelin water exchange on DTI‐derived parameters in diffusion MRI: Elucidation of TE dependence , 2018, Magnetic resonance in medicine.

[12]  So Mi Lee,et al.  Age-Related Changes in Tissue Value Properties in Children: Simultaneous Quantification of Relaxation Times and Proton Density Using Synthetic Magnetic Resonance Imaging , 2017, Investigative radiology.

[13]  Jelle Veraart,et al.  TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T 2 relaxation times , 2017, NeuroImage.

[14]  Hui Zhang,et al.  Whole brain g-ratio mapping using myelin water imaging (MWI) and neurite orientation dispersion and density imaging (NODDI) , 2017, NeuroImage.

[15]  Julien Cohen-Adad,et al.  Promise and pitfalls of g-ratio estimation with MRI , 2017, NeuroImage.

[16]  J. Wisnowski,et al.  Diffusion‐relaxation correlation spectroscopic imaging: A multidimensional approach for probing microstructure , 2017, Magnetic resonance in medicine.

[17]  Peter J. Basser,et al.  Magnetic resonance microdynamic imaging reveals distinct tissue microenvironments , 2017, NeuroImage.

[18]  H. Critchley,et al.  Deficits in Neurite Density Underlie White Matter Structure Abnormalities in First-Episode Psychosis , 2017, Biological Psychiatry.

[19]  C. Lebel,et al.  Detailing neuroanatomical development in late childhood and early adolescence using NODDI , 2017, PloS one.

[20]  D. Alexander,et al.  Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? , 2017, Annals of clinical and translational neurology.

[21]  N. Churchill,et al.  White matter microstructure in athletes with a history of concussion: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) , 2017, Human brain mapping.

[22]  Mark E Bastin,et al.  Ageing and brain white matter structure in 3,513 UK Biobank participants , 2016, Nature Communications.

[23]  A. MacKay,et al.  Magnetic Resonance of Myelin Water: An in vivo Marker for Myelin , 2016, Brain plasticity.

[24]  Stamatios N. Sotiropoulos,et al.  Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images , 2016, NeuroImage.

[25]  Jelle Veraart,et al.  Diffusion MRI noise mapping using random matrix theory , 2016, Magnetic resonance in medicine.

[26]  Ben Jeurissen,et al.  T1 relaxometry of crossing fibres in the human brain , 2016, NeuroImage.

[27]  Dan Benjamini,et al.  Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry. , 2016, Journal of magnetic resonance.

[28]  J. Veraart,et al.  Mapping orientational and microstructural metrics of neuronal integrity with in vivo diffusion MRI , 2016, 1609.09144.

[29]  Duan Xu,et al.  Microstructural maturation of white matter tracts in encephalopathic neonates. , 2016, Clinical imaging.

[30]  Sterling C. Johnson,et al.  Age-dependent differences in brain tissue microstructure assessed with neurite orientation dispersion and density imaging , 2016, Neurobiology of Aging.

[31]  Daniel C. Alexander,et al.  Bingham–NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI , 2016, NeuroImage.

[32]  Andrew L. Alexander,et al.  Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging , 2016, NeuroImage.

[33]  Daniel Cremers,et al.  q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans , 2016, IEEE Transactions on Medical Imaging.

[34]  Jelle Veraart,et al.  In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter , 2016, NeuroImage.

[35]  Thomas W. McAllister,et al.  Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study , 2016, NeuroImage.

[36]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[37]  Osamu Abe,et al.  Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease , 2016, European Radiology.

[38]  Julien Cohen-Adad,et al.  In vivo histology of the myelin g-ratio with magnetic resonance imaging , 2015, NeuroImage.

[39]  S. Nagarajan,et al.  White Matter Changes of Neurite Density and Fiber Orientation Dispersion during Human Brain Maturation , 2015, PloS one.

[40]  R. Peeters,et al.  Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI , 2015, Neurobiology of Aging.

[41]  M. Chakravarty,et al.  Functional Consequences of Neurite Orientation Dispersion and Density in Humans across the Adult Lifespan , 2015, The Journal of Neuroscience.

[42]  Jean-Philippe Thiran,et al.  Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data , 2015, NeuroImage.

[43]  Hui Zhang,et al.  Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models , 2014, NeuroImage.

[44]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[45]  R. Harper,et al.  Age‐related regional brain T2‐relaxation changes in healthy adults , 2012, Journal of magnetic resonance imaging : JMRI.

[46]  Hui Zhang,et al.  Axon diameter mapping in the presence of orientation dispersion with diffusion MRI , 2011, NeuroImage.

[47]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[48]  Fan Zhang,et al.  Effects of echo time on diffusion quantification of brain white matter at 1.5T and 3.0T , 2009, Magnetic resonance in medicine.

[49]  D. Alexander A general framework for experiment design in diffusion MRI and its application in measuring direct tissue‐microstructure features , 2008, Magnetic resonance in medicine.

[50]  Leif Østergaard,et al.  Modeling dendrite density from magnetic resonance diffusion measurements , 2007, NeuroImage.

[51]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[52]  B. Mädler,et al.  Insights into brain microstructure from the T2 distribution. , 2006, Magnetic resonance imaging.

[53]  P. Szeszko,et al.  MRI atlas of human white matter , 2006 .

[54]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[55]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[56]  Alfried Kohlschütter,et al.  Normal Brain Maturation Characterized With Age-Related T2 Relaxation Times: An Attempt to Develop a Quantitative Imaging Measure for Clinical Use , 2004, Investigative radiology.

[57]  Keith Wachowicz,et al.  Assignment of the T2 components of amphibian peripheral nerve to their microanatomical compartments , 2002, Magnetic resonance in medicine.

[58]  Peled Water diffusion, T(2) and compartmentation in frog sciatic nerve , 2000, Magnetic resonance in medicine.

[59]  Ferenc A. Jolesz,et al.  Water diffusion, T2, and compartmentation in frog sciatic nerve , 1999 .

[60]  A. Mackay,et al.  In vivo measurement of T2 distributions and water contents in normal human brain , 1997, Magnetic resonance in medicine.

[61]  M. Bronskill,et al.  Criteria for analysis of multicomponent tissue T2 relaxation data , 1996, Magnetic resonance in medicine.

[62]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..