Developments of Plasma Etching Technology for Fabricating Semiconductor Devices

Plasma etching technologies such as reactive ion etching (RIE), isotropic etching, and ashing/plasma cleaning are the currently used booster technologies for manufacturing all silicon devices based on the scaling law. The needs-driven conversion from the wet etching process to the plasma/dry etching process is reviewed. The progress made in plasma etching technologies is described from the viewpoint of requirements for the manufacturing of devices. The critical applications of RIE, isotropic etching, and plasma ashing/cleaning to form precisely controlled profiles of high-aspect-ratio contacts (HARC), gate stacks, and shallow trench isolation (STI) in the front end of line (FEOL), and also to form precise via holes and trenches used in reliable Cu/low-k (low-dielectric-constant material) interconnects in the back end of line (BEOL) are described in detail. Some critical issues inherent to RIE processing, such as the RIE-lag effect, the notch phenomenon, and plasma-induced damage including charge-up damage are described. The basic reaction mechanisms of RIE and isotropic etching are discussed. Also, a procedure for designing the etching process, which is strongly dependent on the plasma reactor configuration, is proposed. For the more precise critical dimension (CD) control of the gate pattern for leading-edge devices, the advanced process control (APC) system is shown to be effective.

[1]  N. Fujiwara,et al.  ECR Plasma Etching with Heavy Halogen Ions , 1990 .

[2]  G. Tynan,et al.  Selective Plasma Etching for High-Aspect-Ratio Oxide Contact Holes , 1998 .

[3]  M. S. Hwang,et al.  Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films , 2001 .

[4]  H. F. Winters,et al.  Chemical sputtering of fluorinated silicon , 1981 .

[5]  D. W. Hess,et al.  Comparison of Aluminum Etch Rates in Carbon Tetrachloride and Boron Trichloride Plasmas , 1981 .

[6]  C. J. Mogab,et al.  Anisotropic plasma etching of polysilicon , 1980 .

[7]  Nobuo Fujiwara,et al.  Profile Control of poly-Si Etching in Electron Cyclotron Resonance Plasma , 1995 .

[8]  Panayotis C. Andricacos,et al.  Damascene copper electroplating for chip interconnections , 1998, IBM J. Res. Dev..

[9]  Stephen J. Fonash,et al.  An Overview of Dry Etching Damage and Contamination Effects , 1990 .

[10]  Hiroshi Morita,et al.  Thermal Oxidation Rate of a Si3N4Film and Its Masking Effect against Oxidation of Silicon , 1978 .

[11]  J. Battey Design criteria for uniform reaction rates in an oxygen plasma , 1977, IEEE Transactions on Electron Devices.

[12]  Wan Sik Hwang,et al.  Investigation of etching properties of metal nitride/high-k gate stacks using inductively coupled plasma , 2005 .

[13]  K. Giapis,et al.  CHARGING DAMAGE DURING RESIDUAL METAL OVERETCHING , 1999 .

[14]  H. F. Winters Etch products from the reaction on Cl2 with Al(100) and Cu(100) and XeF2 with W(111) and Nb , 1985 .

[15]  N. Negishi,et al.  Deposition control for reduction of 193 nm photoresist degradation in dielectric etching , 2005 .

[16]  B. J. Lin,et al.  Hybrid e‐beam/deep UV exposure using portable conformable masking (PCM) technique , 1979 .

[17]  Daniel C. Edelstein,et al.  Copper Metallization for High Performance Silicon Technology , 2000 .

[18]  Plasma Chemical View of Magnetron and Reactive Ion Etching of Si with Cl2 , 1990 .

[19]  J. Arnold,et al.  Charging of pattern features during plasma etching , 1991 .

[20]  Nobuo Fujiwara,et al.  Investigation of ash damage to ultralow-k inorganic materials , 2004 .

[21]  D. Flamm,et al.  Reaction of fluorine atoms with SiO2 , 1979 .

[23]  W. M. Holber,et al.  Ion energetics in electron cyclotron resonance discharges , 1990 .

[24]  T. Maruyama,et al.  SiO2 Etching in C4F8/O2 Electron Cyclotron Resonance Plasma , 1996 .

[25]  H. F. Winters,et al.  Conductance considerations in the reactive ion etching of high aspect ratio features , 1989 .

[26]  C. Steinbrüchel Universal energy dependence of physical and ion-enhanced chemical etch yields at low ion energy , 1989 .

[27]  A. R. Janus Chemical Etch Rate Studies on Sputtered Chromium Films , 1972 .

[28]  Kurt E. Wampler,et al.  Complex two-dimensional pattern lithography using chromeless phase lithography , 2002 .

[29]  Y. H. Lee,et al.  Study of silicon contamination and near‐surface damage caused by CF4/H2 reactive ion etching , 1984 .

[30]  L. Ephrath Selective Etching of Silicon Dioxide Using Reactive Ion Etching with CF 4 ‐ H 2 , 1979 .

[31]  H. Hada,et al.  Native oxides on Si surfaces of deep‐submicron contact‐hole bottoms , 1995 .

[32]  P. Fisher,et al.  Is gate line edge roughness a first-order issue in affecting the performance of deep sub-micro bulk MOSFET devices? , 2004, IEEE Transactions on Semiconductor Manufacturing.

[33]  P. M. Schaible,et al.  Reactive ion etching of aluminum and aluminum alloys in an rf plasma containing halogen species , 1978 .

[34]  N. Hirashita,et al.  Vertical Profile Control in Ultrahigh-Aspect-Ratio Contact Hole Etching with 0.05-µm-Diameter Range , 1998 .

[35]  S. Sze,et al.  Effects of H2 plasma treatment on low dielectric constant methylsilsesquioxane , 1999 .

[36]  N. Fujiwara,et al.  Analysis of Fluorocarbon Deposition during SiO2 Etching , 1996 .

[37]  N. Fujiwara,et al.  Cold and Low-Energy Ion Etching (COLLIE) , 1989 .

[38]  A Review of SiO2 Etching Studies in Inductively Coupled Fluorocarbon Plasmas , 2001 .

[39]  H. F. Winters The role of chemisorption in plasma etching , 1978 .

[40]  S. Sakamori,et al.  Evaluation of Electron Shading Charge Buildup Damage Using Metal-Nitride-Oxide-Silicon Capacitors , 1997 .

[41]  N. Lee,et al.  Dry Etching of TaN/HfO2 Gate Stack Structure by Cl2/SF6/Ar Inductively Coupled Plasma , 2005 .

[42]  C. W. Jurgensen,et al.  Simulation of reactive ion etching pattern transfer , 1989 .

[43]  Francis F. Chen,et al.  Plasma ionization by helicon waves , 1991 .

[44]  R. Poulsen Plasma etching in integrated circuit manufacture—A review , 1977 .

[45]  N. Fujiwara,et al.  Effect Plasma Transport on Etched Profiles with Surface Topography in Diverging Field Electron Cyclotron Resonance Plasma , 1994 .

[46]  H. Nakata,et al.  Plasma etching characteristics of chromium film and its novel etching mode , 1980 .

[47]  J. Bondur Dry process technology (reactive ion etching) , 1976 .

[48]  K. Karahashi,et al.  Etching yield of SiO2 irradiated by F+, CFx+ (x=1,2,3) ion with energies from 250 to 2000 eV , 2004 .

[49]  D. J. Oostra,et al.  Mechanisms of sputtering of Si in a Cl2 environment by ions with energies down to 75 eV , 1988 .

[50]  N. Fujiwara,et al.  Etching yields of SiO2 by low energy CFx+ and F+ ions , 1993 .

[51]  J. Stevens,et al.  Optimized microwave coupling in an electron cyclotron resonance etch tool , 1991 .

[52]  R. Bruce,et al.  High Rate Anisotropic Aluminum Etching , 1983 .

[53]  Haruhiko Abe,et al.  Etching Characteristics of Silicon and its Compounds by Gas Plasma , 1973 .

[54]  Jane P. Chang,et al.  Kinetic study of low energy ion-enhanced polysilicon etching using Cl, Cl2, and Cl+ beam scattering , 1997 .

[55]  C. J. Mogab,et al.  The Loading Effect in Plasma Etching , 1977 .

[56]  J. Mauer,et al.  Mechanism of silicon etching by a CF4 plasma , 1978 .

[57]  Y. H. Lee,et al.  Near-surface damage and contamination after CF/sub 4//H/sub 2/ reactive ion etching of Si , 1985 .

[58]  M. C. Peignon,et al.  Contact Etching Process Characterization by Using Angular X‐Ray Photoelectron Spectroscopy Technique , 1996 .

[59]  Yoon-Hae Kim,et al.  Low-k Si–O–C–H composite films prepared by plasma-enhanced chemical vapor deposition using bis-trimethylsilylmethane precursor , 2000 .

[60]  N. Fujiwara,et al.  Etched profile distortions in high density electron cyclotron resonance plasma , 1994 .

[61]  J. Moon,et al.  Etching characteristics and modeling for oval-shaped contact , 2007 .

[62]  C. Guarnieri,et al.  Langmuir probe measurements of a radio frequency induction plasma , 1993 .

[63]  E. Ikawa,et al.  Reactive ion etching lag on high rate oxide etching using high density plasma , 1995 .

[64]  Sadayuki Okudaira,et al.  Chemical sputtering of silicon by F+, Cl+, and Br+ ions: Reactive spot model for reactive ion etching , 1986 .

[65]  K. Karahashi,et al.  Mass-analyzed CFx+ (x=1,2,3) ion beam study on selectivity of SiO2-to-SiN etching and a-C:F film deposition , 2005 .

[66]  J. Coburn,et al.  Ion-enhanced gas-surface chemistry: The influence of the mass of the incident ion , 1981 .

[67]  Osama O. Awadelkarim,et al.  Observation of a new type of plasma etching damage: Damage to N-channel transistors arising from inductive metal loops , 1996 .

[68]  H. F. Winters,et al.  Plasma‐assisted etching mechanisms: The implications of reaction probability and halogen coverage , 1985 .

[69]  Karen Maex,et al.  Comparative study of SiOCH low-k films with varied porosity interacting with etching and cleaning plasma , 2002 .

[70]  Y. Tezuka,et al.  Analysis of Fluorocarbon Plasma Damage on Si and Its Influence on Ti Silicidation , 1995 .

[71]  S. Sze,et al.  Enhancing the Oxygen Plasma Resistance of Low-k Methylsilsesquioxane by H2 Plasma Treatment , 1999 .

[72]  Rudolf A.H. Heinecke,et al.  Control of relative etch rates of SiO2 and Si in plasma etching , 1975 .

[73]  C. W. Jurgensen,et al.  Microscopic uniformity in plasma etching , 1992 .

[74]  T. Miller,et al.  A Study of the Optical Emission from an rf Plasma during Semiconductor Etching , 1977 .

[75]  N. Fujiwara,et al.  Pulsed Plasma Processing for Reduction of Profile Distortion Induced by Charge Buildup in Electron Cyclotron Resonance Plasma , 1996 .

[76]  L. Maissel,et al.  Application of RF discharges to sputtering , 1970 .

[77]  M. S. Hwang,et al.  Origin of low dielectric constant of carbon-incorporated silicon oxide film deposited by plasma enhanced chemical vapor deposition , 2001 .

[78]  Y. Horiike,et al.  High rate and highly selective SiO2 etching employing inductively coupled plasma and discussion on reaction kinetics , 1995 .

[79]  H. F. Winters,et al.  Ion- and electron-assisted gas-surface chemistry—An important effect in plasma etching , 1979 .

[80]  J. Cook,et al.  Application of EPR spectroscopy to oxidative removal of organic materials , 1983 .

[81]  R. Heinecke Plasma reactor design for the selective etching of SiO2 on Si , 1976 .

[82]  Takashi Namura,et al.  Charge Buildup in Magnetized Process Plasma , 1991 .

[83]  R. Boswell,et al.  Plasma production using a standing helicon wave , 1970 .

[84]  J. Bonevich,et al.  Superconformal Electrodeposition of Copper in 500–90 nm Features , 2000 .

[85]  Satoshi Yusa,et al.  Development of attenuating PSM shifter for F2 and high-transmission ArF lithography , 2003, Photomask Japan.

[86]  F. Robb Hydrogen Plasma Etching of Organics , 1984 .

[87]  D. J. Pearson,et al.  Chemical‐Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects , 1991 .

[88]  Y. Horiike,et al.  Microloading Effect in Highly Selective SiO2 Contact Hole Etching Employing Inductively Coupled Plasma , 1994 .

[89]  Y. H. Lee,et al.  Passivation effect on low-k SiOC dielectrics by H2 plasma treatment , 2002 .

[90]  S. Mader,et al.  Silicon Damage Caused by Hydrogen Containing Plasmas , 1983 .

[91]  C. Guarnieri,et al.  Electromagnetic fields in a radio‐frequency induction plasma , 1993 .

[92]  K. Yonekura,et al.  Low-Damage Damascene Patterning Using Porous Inorganic Low-Dielectric-Constant Materials , 2005 .

[93]  J. L. Vossen,et al.  Glow Discharge Phenomena in Plasma Etching and Plasma Deposition , 1979 .

[94]  K. Kawai,et al.  Highly Selective Contact Hole Etching Using Electron Cyclotron Resonance Plasma , 1995 .

[95]  N. Fujiwara,et al.  Mechanism of Reactive Ion Etching Lag in WSi2 Etching Using Electron Cyclotron Resonance Plasma , 1994 .

[96]  R. A. Barker,et al.  Simulation of plasma‐assisted etching processes by ion‐beam techniques , 1982 .

[97]  J.C.S. Woo,et al.  TCAD-based statistical analysis and modeling of gate line-edge roughness effect on nanoscale MOS transistor performance and scaling , 2004, IEEE Transactions on Semiconductor Manufacturing.