Pivoting makes the ZX-calculus complete for real stabilizers
暂无分享,去创建一个
[1] Peter Selinger,et al. Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.
[2] Ross Duncan,et al. Types for quantum computing , 2006 .
[3] Bart De Moor,et al. Edge-local equivalence of graphs , 2005 .
[4] Bart De Moor,et al. Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.
[5] Simon Perdrix,et al. Rewriting Measurement-Based Quantum Computations with Generalised Flow , 2010, ICALP.
[6] Simon Perdrix,et al. Graph States and the Necessity of Euler Decomposition , 2009, CiE.
[7] Umesh V. Vazirani,et al. Quantum complexity theory , 1993, STOC.
[8] Miriam Backens,et al. The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.
[9] Bob Coecke,et al. Trichromatic Open Digraphs for Understanding Qubits , 2011, ArXiv.
[10] Ross Duncan,et al. A graphical approach to measurement-based quantum computing , 2012, Quantum Physics and Linguistics.
[11] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[12] Matthew G. Parker,et al. Edge local complementation and equivalence of binary linear codes , 2008, Des. Codes Cryptogr..
[13] Mehdi Mhalla,et al. Graph States, Pivot Minor, and Universality of (X, Z)-Measurements , 2012, Int. J. Unconv. Comput..
[14] A. Joyal,et al. The geometry of tensor calculus, I , 1991 .
[15] B. Coecke,et al. Classical and quantum structuralism , 2009, 0904.1997.