Explicit construction of linear sized tolerant networks

For every @e>0 and every integer m>0, we construct explicitly graphs with O(m/@e) vertices and maximum degree O(1/@e^2), such that after removing any (1-@e) portion of their vertices or edges, the remaining graph still contains a path of length m. This settles a problem of Rosenberg, which was motivated by the study of fault tolerant linear arrays.

[1]  Ralph J. Faudree,et al.  Size Ramsey numbers involving stars , 1983, Discret. Math..

[2]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[3]  Arnold L. Rosenberg Fault-Tolerant Interconnection Networks: A Graph-Theoretic Approach , 1983, WG.

[4]  Chak-Kuen Wong,et al.  Minimum K-hamiltonian graphs , 1984, J. Graph Theory.

[5]  Ronald L. Graham,et al.  On Universal Graphs for Spanning Trees , 1983 .

[6]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[7]  József Beck,et al.  On size Ramsey number of paths, trees, and circuits. I , 1983, J. Graph Theory.

[8]  Joel Friedman,et al.  Expanding graphs contain all small trees , 1987, Comb..

[9]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[10]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[11]  Noga Alon,et al.  Eigenvalues, Expanders and Superconcentrators (Extended Abstract) , 1984, FOCS.

[12]  H. Davenport Multiplicative Number Theory , 1967 .

[13]  Arnold L. Rosenberg,et al.  Optimal simulations of tree machines , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[14]  S. Burr A SURVEY OF NONCOMPLETE RAMSEY THEORY FOR GRAPHS , 1979 .

[15]  P. Erdos,et al.  The size Ramsey number , 1978 .

[16]  John P. Hayes,et al.  A Graph Model for Fault-Tolerant Computing Systems , 1976, IEEE Transactions on Computers.

[17]  L. Lovász Combinatorial problems and exercises , 1979 .

[18]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[19]  Arnold L. Rosenberg,et al.  Optimal Simulations of Tree Machines (Preliminary Version) , 1986, FOCS 1986.

[20]  P. Erdoes,et al.  On sparse graphs with dense long paths. , 1975 .