Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters

A frequency analysis has been conducted to study vibration energy harvesting performance and characteristics of a single degree of freedom vibration energy harvester connected to a single load resistor based on the Laplace transfer method and physical models of a voltage source. The performance and characteristics of electromagnetic and piezoelectric harvesters have been analysed and compared. The main research outcome is the disclosure of similarity and duality of electromagnetic and piezoelectric harvesters for both the energy harvesting efficiency and the normalised resonant harvested power using only two dimensionless characteristic parameters: the normalised resistance and the normalised force factor. The dimensionless resonant harvested power and energy harvesting efficiency analysis allows for a parameter study and optimization of the ambient vibration energy harvesters from macro- to nano-scales and for evaluation of the vibration energy harvester performance regardless of the size and type.

[1]  Ephrahim Garcia,et al.  Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits , 2010 .

[2]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[3]  Daniel J. Inman,et al.  Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .

[4]  Yi-Chung Shu,et al.  Efficiency of energy conversion for a piezoelectric power harvesting system , 2006 .

[5]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[6]  Peng Zeng,et al.  Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art , 2010, IEEE Transactions on Industrial Electronics.

[7]  Xu Wang,et al.  A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester , 2015 .

[8]  M. Porfiri,et al.  Energy harvesting from base excitation of ionic polymer metal composites in fluid environments , 2009 .

[9]  Di Chen,et al.  A MEMS-based piezoelectric power generator array for vibration energy harvesting , 2008, Microelectron. J..

[10]  Daniel J. Inman,et al.  Energy Harvesting Technologies , 2008 .

[11]  Lei Wang,et al.  Vibration energy harvesting by magnetostrictive material , 2008 .

[12]  Yuji Suzuki,et al.  Recent progress in MEMS electret generator for energy harvesting , 2011 .

[13]  N. G. Stephen,et al.  On energy harvesting from ambient vibration , 2006 .

[14]  H. Sodano,et al.  Optimal parameters and power characteristics of piezoelectric energy harvesters with an RC circuit , 2009 .

[15]  Yves St-Amant,et al.  Improving the performance of a piezoelectric energy harvester using a variable thickness beam , 2010 .

[16]  Xu Wang,et al.  A Study of Linear Regenerative Electromagnetic Shock Absorber System , 2015 .

[17]  D. Dane Quinn,et al.  The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting , 2009 .

[18]  Daniel J. Inman,et al.  Piezoelectric energy harvesting from broadband random vibrations , 2009 .

[19]  Claude Richard,et al.  Energy Harvesting from Ambient Vibrations and Heat , 2009 .

[20]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[21]  Han Xiao,et al.  A review of piezoelectric vibration energy harvesting techniques , 2014 .

[22]  Daniel J. Inman,et al.  On the optimal energy harvesting from a vibration source using a PZT stack , 2009 .

[23]  Xu Wang,et al.  Dimensionless Analysis and Optimization of Piezoelectric Vibration Energy Harvester , 2013 .

[24]  Wen-Jong Wu,et al.  Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting , 2010 .

[25]  Xu Wang,et al.  Piezoelectric vibration energy harvester - design and prototype , 2012 .

[26]  Francois Costa,et al.  Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system , 2004 .

[27]  Nong Zhang,et al.  Comparison of electromagnetic and piezoelectric vibration energy harvesters with different interface circuits , 2016 .

[28]  Simon Watkins,et al.  Coupling analysis of linear vibration energy harvesting systems , 2016 .

[29]  Xu Wang,et al.  A multi-degree of freedom piezoelectric vibration energy harvester with piezoelectric elements inserted between two nearby oscillators , 2016 .

[30]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[31]  Jinhao Qiu,et al.  Comparison of electromagnetic and piezoelectric vibration energy harvesters: Model and experiments , 2012 .

[32]  Yi-Chung Shu,et al.  Analysis of power output for piezoelectric energy harvesting systems , 2006 .

[33]  Xu Wang,et al.  A study of electromagnetic vibration energy harvesters with different interface circuits , 2015 .

[34]  J. Dugundji,et al.  Modeling and experimental verification of proof mass effects on vibration energy harvester performance , 2010 .

[35]  M. G. Prasad,et al.  A vibration energy harvesting device with bidirectional resonance frequency tunability , 2008 .

[36]  Rathishchandra R. Gatti,et al.  Spatially-varying multi-degree-of-freedom electromagnetic energy harvesting , 2013 .

[37]  Wen-Jong Wu,et al.  Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers , 2009 .

[38]  Wen-Jong Wu,et al.  An improved analysis of the SSHI interface in piezoelectric energy harvesting , 2007 .

[39]  Wen-Jong Wu,et al.  Modeling the Effects of Electromechanical Coupling on Energy Storage Through Piezoelectric Energy Harvesting , 2010, IEEE/ASME Transactions on Mechatronics.

[40]  Brian P. Mann,et al.  Uncertainty in performance for linear and nonlinear energy harvesting strategies , 2012 .

[41]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[42]  Xu Wang,et al.  Dimensionless optimization of piezoelectric vibration energy harvesters with different interface circuits , 2013 .

[43]  N. Dutoit,et al.  PERFORMANCE OF MICROFABRICATED PIEZOELECTRIC VIBRATION ENERGY HARVESTERS , 2006 .

[44]  P. Constantinou,et al.  A Magnetically Sprung Generator for Energy Harvesting Applications , 2012, IEEE/ASME Transactions on Mechatronics.

[45]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[46]  Xu Wang Coupling loss factor of linear vibration energy harvesting systems in a framework of statistical energy analysis , 2016 .

[47]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[48]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[49]  S. Shokat,et al.  電界応答性キトサン-ポリ(N,N-ジメチルアクリルアミド)セミIPNゲル膜およびそれらの誘電,熱および膨潤キャラクタリゼーション , 2013 .

[50]  Henry A. Sodano,et al.  Model of a single mode energy harvester and properties for optimal power generation , 2008 .

[51]  Brian P. Mann,et al.  Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting , 2012 .

[52]  Eugenio Brusa,et al.  Vibration energy scavenging via piezoelectric bimorphs of optimized shapes , 2010 .

[53]  Henry A. Sodano,et al.  Structural Effects and Energy Conversion Efficiency of Power Harvesting , 2009 .

[54]  Danick Briand,et al.  The realization and performance of vibration energy harvesting MEMS devices based on an epitaxial piezoelectric thin film , 2011 .

[55]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .