Tuning and Switching Enantioselectivity of Asymmetric Carboligation in an Enzyme through Mutational Analysis of a Single Hot Spot

Enantioselective bond making and breaking is a hallmark of enzyme action, yet switching the enantioselectivity of the reaction is a difficult undertaking, and typically requires extensive screening of mutant libraries and multiple mutations. Here, we demonstrate that mutational diversification of a single catalytic hot spot in the enzyme pyruvate decarboxylase gives access to both enantiomers of acyloins acetoin and phenylacetylcarbinol, important pharmaceutical precursors, in the case of acetoin even starting from the unselective wild‐type protein. Protein crystallography was used to rationalize these findings and to propose a mechanistic model of how enantioselectivity is controlled. In a broader context, our studies highlight the efficiency of mechanism‐inspired and structure‐guided rational protein design for enhancing and switching enantioselectivity of enzymatic reactions, by systematically exploring the biocatalytic potential of a single hot spot.

[1]  Zhoutong Sun,et al.  Reshaping an enzyme binding pocket for enhanced and inverted stereoselectivity: use of smallest amino acid alphabets in directed evolution. , 2015, Angewandte Chemie.

[2]  U. Bornscheuer,et al.  Two Subtle Amino Acid Changes in a Transaminase Substantially Enhance or Invert Enantiopreference in Cascade Syntheses , 2015, Chembiochem : a European journal of chemical biology.

[3]  Huimin Zhao,et al.  Improving and repurposing biocatalysts via directed evolution. , 2015, Current opinion in chemical biology.

[4]  David Baker,et al.  Enantioselective enzymes by computational design and in silico screening. , 2015, Angewandte Chemie.

[5]  M. Fraaije,et al.  Finding the switch: turning a baeyer-villiger monooxygenase into a NADPH oxidase. , 2014, Journal of the American Chemical Society.

[6]  Jürgen Pleiss,et al.  Enzyme Toolbox: Novel Enantiocomplementary Imine Reductases , 2014, Chembiochem : a European journal of chemical biology.

[7]  R. Xiao,et al.  Unconserved substrate-binding sites direct the stereoselectivity of medium-chain alcohol dehydrogenase. , 2014, Chemical communications.

[8]  V. Brecht,et al.  Elucidation of the Enantioselective Cyclohexane‐1,2‐dione Hydrolase Catalyzed Formation of (S)‐Acetoin , 2014 .

[9]  J. Pleiss,et al.  Engineering stereoselectivity of ThDP‐dependent enzymes , 2013, The FEBS journal.

[10]  W. Wang,et al.  Efficient colonization and harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis , 2013, Letters in applied microbiology.

[11]  J. Gao,et al.  Production of S‐acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ‐9 , 2013, Letters in applied microbiology.

[12]  P. Neumann,et al.  Sub-ångström-resolution crystallography reveals physical distortions that enhance reactivity of a covalent enzymatic intermediate. , 2013, Nature chemistry.

[13]  P. Neumann,et al.  Observation of a stable carbene at the active site of a thiamin enzyme. , 2013, Nature chemical biology.

[14]  M. Pohl,et al.  Zwei Schritte in einem Reaktionsgefäß: Enzymkaskaden zur selektiven Synthese von Nor(pseudo)ephedrin aus kostengünstigen Ausgangsmaterialien , 2013 .

[15]  Dörte Rother,et al.  Two steps in one pot: enzyme cascade for the synthesis of nor(pseudo)ephedrine from inexpensive starting materials. , 2013, Angewandte Chemie.

[16]  Gheorghe-Doru Roiban,et al.  Induced axial chirality in biocatalytic asymmetric ketone reduction. , 2013, Journal of the American Chemical Society.

[17]  Manfred T Reetz,et al.  Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope. , 2013, Journal of the American Chemical Society.

[18]  Zhong-Liu Wu,et al.  Mutations at the putative active cavity of styrene monooxygenase: enhanced activity and reversed enantioselectivity. , 2012, Journal of biotechnology.

[19]  Dan S. Tawfik,et al.  Directed enzyme evolution: beyond the low-hanging fruit. , 2012, Current opinion in structural biology.

[20]  G. Huisman,et al.  Engineering the third wave of biocatalysis , 2012, Nature.

[21]  Michael Müller,et al.  Conversion of pyruvate decarboxylase into an enantioselective carboligase with biosynthetic potential. , 2011, Journal of the American Chemical Society.

[22]  Manfred T Reetz,et al.  Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. , 2011, Angewandte Chemie.

[23]  M. T. Reetz Gerichtete Evolution stereoselektiver Enzyme: Eine ergiebige Katalysator-Quelle f r asymmetrische Reaktionen , 2011 .

[24]  Donald Hilvert,et al.  Biocatalysts by evolution. , 2010, Current opinion in biotechnology.

[25]  P. Neumann,et al.  Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate . , 2010, Biochemistry.

[26]  S. Duquesne,et al.  Rationally engineered double substituted variants of Yarrowia lipolytica lipase with enhanced activity coupled with highly inverted enantioselectivity towards 2‐bromo phenyl acetic acid esters , 2010, Biotechnology and bioengineering.

[27]  Jasmine L. Gallaher,et al.  Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction , 2010, Science.

[28]  X. Pei,et al.  Structural Insights into the Prereaction State of Pyruvate Decarboxylase from Zymomonas mobilis†,‡ , 2010, Biochemistry.

[29]  A. Schaller,et al.  Ein enantiokomplementäres dirigierendes Protein für die enantioselektive Laccase‐katalysierte oxidative Phenolkupplung , 2010 .

[30]  A. Schaller,et al.  An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. , 2010, Angewandte Chemie.

[31]  Nicholas J Turner,et al.  Directed evolution drives the next generation of biocatalysts. , 2009, Nature chemical biology.

[32]  Kurt Faber,et al.  Enantiocomplementary enzymes: classification, molecular basis for their enantiopreference, and prospects for mirror-image biotransformations. , 2008, Angewandte Chemie.

[33]  Kurt Faber,et al.  Enantiokomplementäre Enzyme: Klassifizierung, molekulare Grundlage der Enantiopräferenz und Prognosen für spiegelbildliche Biotransformationen , 2008 .

[34]  K. Tittmann,et al.  Thiamin diphosphate catalysis: enzymic and nonenzymic covalent intermediates. , 2008, Chemical reviews.

[35]  George L Kenyon,et al.  Saturation mutagenesis of putative catalytic residues of benzoylformate decarboxylase provides a challenge to the accepted mechanism , 2008, Proceedings of the National Academy of Sciences.

[36]  G. Schneider,et al.  Rational Protein Design of ThDP‐Dependent Enzymes—Engineering Stereoselectivity , 2008, Chembiochem : a European journal of chemical biology.

[37]  Donald Hilvert,et al.  Minimale Umgestaltung aktiver Enzymtaschen – wie man alten Enzymen neue Kunststücke beibringt , 2007 .

[38]  Donald Hilvert,et al.  Minimalist active-site redesign: teaching old enzymes new tricks. , 2007, Angewandte Chemie.

[39]  K. Gruber,et al.  Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution. , 2007, Journal of biotechnology.

[40]  F. Jordan,et al.  Synthesis with good enantiomeric excess of both enantiomers of alpha-ketols and acetolactates by two thiamin diphosphate-dependent decarboxylases. , 2006, Bioorganic chemistry.

[41]  Gavin J. Williams,et al.  Creation of a pair of stereochemically complementary biocatalysts. , 2006, Journal of the American Chemical Society.

[42]  A. Steinmetz,et al.  The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography , 2006, Nature chemical biology.

[43]  K. Hult,et al.  An S-selective lipase was created by rational redesign and the enantioselectivity increased with temperature. , 2005, Angewandte Chemie.

[44]  R. Golbik,et al.  Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. , 2005, Biochemistry.

[45]  F. Raushel,et al.  Enzymatic resolution of chiral phosphinate esters. , 2004, Journal of the American Chemical Society.

[46]  D. Hilvert,et al.  Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. , 2003, Journal of the American Chemical Society.

[47]  Frank Jordan,et al.  NMR analysis of covalent intermediates in thiamin diphosphate enzymes. , 2003, Biochemistry.

[48]  D. Gibson,et al.  Regioselectivity and Enantioselectivity of Naphthalene Dioxygenase during Arene cis-Dihydroxylation: Control by Phenylalanine 352 in the α Subunit , 2000, Journal of bacteriology.

[49]  M. Ferrer,et al.  Inversion of stereospecificity of vanillyl-alcohol oxidase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  W. Berkel,et al.  Inversion of Stereospecificity in Vanillyl-Alcohol Oxidase , 2000 .

[51]  P. Siegert,et al.  Application of α-keto acid decarboxylases in biotransformations , 1998 .

[52]  Norman G. Lewis,et al.  Stereoselective Bimolecular Phenoxy Radical Coupling by an Auxiliary (Dirigent) Protein Without an Active Center , 1997, Science.

[53]  M. Pohl,et al.  Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis. , 1997, Advances in biochemical engineering/biotechnology.