Improving the Performance of Constructive Multi-Start Search Using Record-Keeping

State-space search redundancy, that is, multiple explorations of the same state, is an inherent problem in many heuristic search algorithms. It is prevalent in constructive multi-start algorithms. Record-keeping mechanisms, however, can minimize redundancy and enable exploiting time/space tradeoffs. This paper investigates the utility of record-keeping procedures in the context of Iterative Hill Climbing applied to the Traveling Salesperson Problem using several restart mechanisms including Greedy Randomized Adaptive Search, and Greedy Enumeration. Record-keeping methods such as unbounded memory, dedicated memory, and cache memory, as well as a novel "book-keeping" method utilizing a Bloom filter are investigated. Experiments performed using TSPLIB benchmarks and random TSP instances with 100 cities show that under the above mentioned restart and record-keeping mechanisms the IHC produces competitive results. In addition, the research shows that record-keeping, in specific Bloom filters, can considerably improve both the time performance of IHC and the quality of solutions produced.

[1]  Dan E. Tamir,et al.  Time Space Tradeoffs in GA Based Feature Selection for Workload Characterization , 2010, IEA/AIE.

[2]  Fred Glover,et al.  Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory , 1999, INFORMS J. Comput..

[3]  Kevin Grant,et al.  Efficient Caching in Elimination Trees , 2007, FLAIRS.

[4]  Mohammad Bagher Menhaj,et al.  A Bayesian Network Based Approach for Data Classification Using Structural Learning , 2008, CSICC.

[5]  F. Glover,et al.  Local Search and Metaheuristics , 2007 .

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Michael Mitzenmacher,et al.  Less Hashing, Same Performance: Building a Better Bloom Filter , 2006, ESA.

[8]  Aneesh Aggarwal Software caching vs. prefetching , 2002, MSP/ISMM.

[9]  James A. Anderson,et al.  Discrete Mathematics with Combinatorics , 2000 .

[10]  David A. Patterson,et al.  Computer Architecture, Fifth Edition: A Quantitative Approach , 2011 .

[11]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[12]  Toniann Pitassi,et al.  An Exponential Time/Space Speedup For Resolution , 2007, Electron. Colloquium Comput. Complex..

[13]  Celso C. Ribeiro,et al.  Using an Adaptive Memory Strategy to Improve a Multistart Heuristic for Sequencing by Hybridization , 2005, WEA.

[14]  Eugene Santos,et al.  Cache Diversity in Genetic Algorithm Design , 2000, FLAIRS Conference.

[15]  Michel Gendreau,et al.  Metaheuristics: Progress in Complex Systems Optimization , 2007 .

[16]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[17]  John Clark,et al.  A First Look at Graph Theory , 1991 .

[18]  Fabio Gagliardi Cozman,et al.  Embedded Bayesian Networks: Anyspace, Anytime Probabilistic Inference , 2002 .

[19]  Denis Naddef,et al.  Efficient separation routines for the symmetric traveling salesman problem I: general tools and comb separation , 2002, Math. Program..

[20]  E. Tsang,et al.  Guided Local Search , 2010 .

[21]  Bryan Kolaczkowski,et al.  Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous , 2004, Nature.

[22]  Weidong Wu Packet Forwarding Technologies , 2007 .

[23]  Aneesh Aggarwal,et al.  Software caching vs. prefetching , 2002, ISMM '02.

[24]  Panagiotis Manolios,et al.  Bloom Filters in Probabilistic Verification , 2004, FMCAD.

[25]  Jin Kwak Information Security, Practice and Experience, 6th International Conference, ISPEC 2010, Seoul, Korea, May 12-13, 2010. Proceedings , 2010, ISPEC.

[26]  Celso C. Ribeiro,et al.  GRASP with Path-Relinking: Recent Advances and Applications , 2005 .

[27]  Laszlo A. Belady,et al.  A Study of Replacement Algorithms for Virtual-Storage Computer , 1966, IBM Syst. J..

[28]  Michael T. Goodrich,et al.  Algorithm Design: Foundations, Analysis, and Internet Examples , 2001 .

[29]  David Allen,et al.  Optimal Time-Space Tradeoff in Probabilistic Inference , 2003, Probabilistic Graphical Models.

[30]  Dan E. Tamir,et al.  Caching in the TSP Search Space , 2009, IEA/AIE.

[31]  Donald C. Wunsch,et al.  Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks , 2003, Neural Networks.

[32]  Luiz Satoru Ochi,et al.  A GRASP with Adaptive Memory for a Period Vehicle Routing Problem , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[33]  John David Funge Artificial Intelligence for Computer Games: An Introduction , 2004 .

[34]  장훈,et al.  [서평]「Computer Organization and Design, The Hardware/Software Interface」 , 1997 .

[35]  Gerard Sierksma,et al.  Complete Local Search with Memory , 2002, J. Heuristics.

[36]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics) , 2007 .

[37]  David Hutchison,et al.  Scalable Bloom Filters , 2007, Inf. Process. Lett..

[38]  Emile H. L. Aarts,et al.  Theoretical aspects of local search , 2006, Monographs in Theoretical Computer Science. An EATCS Series.

[39]  Sheldon H. Jacobson,et al.  Analyzing the Complexity of Finding Good Neighborhood Functions for Local Search Algorithms , 2006, J. Glob. Optim..

[40]  G. Edwards Texas , 1958, "These United States".

[41]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[42]  David A. Patterson,et al.  Computer Architecture - A Quantitative Approach (4. ed.) , 2007 .

[43]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[44]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[45]  Thomas Stützle,et al.  Stochastic Local Search , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[46]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[47]  Sajjan G. Shiva Computer design & architecture , 1991 .

[48]  Nils J. Nilsson,et al.  Artificial Intelligence: A New Synthesis , 1997 .

[49]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[50]  Craig A. Knoblock,et al.  Planning by Rewriting , 2001, J. Artif. Intell. Res..

[51]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[52]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[53]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[54]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[55]  Giovanni Rinaldi,et al.  Facet identification for the symmetric traveling salesman polytope , 1990, Math. Program..

[56]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[57]  Tzung-Pei Hong,et al.  Next-Generation Applied Intelligence, 22nd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2009, Tainan, Taiwan, June 24-27, 2009. Proceedings , 2009, IEA/AIE.

[58]  Rajendra Akerkar Introduction to Artificial Intelligence , 2005 .

[59]  G. Chartrand Introductory Graph Theory , 1984 .

[60]  David S. Johnson,et al.  The Traveling Salesman Problem: A Case Study in Local Optimization , 2008 .

[61]  Hesham El-Rewini,et al.  Fundamentals of computer organization and architecture , 2004, Wiley series on parallel and distributed computing.

[62]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[63]  Fabio Gagliardi Cozman,et al.  Anytime anyspace probabilistic inference , 2004, Int. J. Approx. Reason..

[64]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[65]  Nikil D. Dutt,et al.  Memory Architecture Exploration for Programmable Embedded Systems , 2002, Springer US.

[66]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[67]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[68]  Geoffrey J. Gordon,et al.  A Fast Bundle-based Anytime Algorithm for Poker and other Convex Games , 2007, AISTATS.

[69]  Adnan Darwiche,et al.  Recursive conditioning , 2001, Artif. Intell..

[70]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[71]  David S. Johnson,et al.  8. The traveling salesman problem: a case study , 2003 .

[72]  William Stallings,et al.  Cryptography and Network Security: Principles and Practice , 1998 .

[73]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[74]  M. Resende,et al.  GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES (GRASP) , 1999 .

[75]  Rina Dechter,et al.  Topological parameters for time-space tradeoff , 1996, Artif. Intell..

[76]  J. Christopher Beck An Empirical Study of Multi-Point Constructive Search for Constraint-Based Scheduling , 2006, ICAPS.