Maximizing the information gain of a single ion microscope using bayes experimental design

We demonstrate nanoscopic transmission microscopy, using a deterministic single particle source, and compare the resulting images in terms of signal-to-noise ratio with those of conventional Poissonian sources. Our source is realized by deterministic extraction of laser-cooled calcium ions from a Paul trap. Gating by the extraction event allows for the suppression of detector dark counts by six orders of magnitude. Using the Bayes experimental design method, the deterministic characteristics of this source are harnessed to maximize information gain, when imaging structures with a parametrizable transmission function. We demonstrate such optimized imaging by determining parameter values of one and two dimensional transmissive structures.

[1]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[2]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[3]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[4]  J. Meijer,et al.  Optical detection of a single rare-earth ion in a crystal , 2012, Nature Communications.

[5]  Tommaso Calarco,et al.  Colloquium: Trapped ions as quantum bits: Essential numerical tools , 2009, 0912.0196.

[6]  Prawer,et al.  Ion-beam-induced transformation of diamond. , 1995, Physical review. B, Condensed matter.

[7]  H. Higaki,et al.  Controlled Extraction of Ultracold Ions from a Linear Paul Trap for Nanobeam Production , 2010 .

[8]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[9]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[10]  S. Deleglise,et al.  Progressive field-state collapse and quantum non-demolition photon counting , 2007, Nature.

[11]  Søren Andresen,et al.  Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions , 2005 .

[12]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, 1212.2804.

[13]  D. Wineland Nobel Lecture: Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[14]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[15]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[16]  Jannik C. Meyer,et al.  Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene , 2015, Nano letters.

[17]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[18]  A Smerzi,et al.  Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry. , 2007, Physical review letters.

[19]  F. Schmidt-Kaler,et al.  Deterministic ultracold ion source targeting the Heisenberg limit. , 2009, Physical review letters.

[20]  Seong‐Hyeon Hong,et al.  Practical Approaches to Mitigation of Specimen Charging in High-Resolution Transmission Electron Microscopy , 2010 .

[21]  Dieter Meschede,et al.  Bayesian feedback control of a two-atom spin-state in an atom-cavity system. , 2012, Physical review letters.