Coloring with no 2-Colored P4's

A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings , i.e., proper colorings in which every two color classes induce a forest. We show that every acyclic $k$-coloring can be refined to a star coloring with at most $(2k^2-k)$ colors. Similarly, we prove that planar graphs have star colorings with at most 20 colors and we exhibit a planar graph which requires 10 colors. We prove several other structural and topological results for star colorings, such as: cubic graphs are $7$-colorable, and planar graphs of girth at least $7$ are $9$-colorable. We provide a short proof of the result of Fertin, Raspaud, and Reed that graphs with tree-width $t$ can be star colored with ${t+2\choose2}$ colors, and we show that this is best possible.

[1]  Victor Reiner,et al.  Shifted simplicial complexes are Laplacian integral , 2002 .

[2]  Art M. Duval A Common Recursion For Laplacians of Matroids and Shifted Simplicial Complexes , 2003 .

[3]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[4]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[5]  B. Aronov,et al.  Discrete and computational geometry : the Goodman-Pollack Festschrift , 2003 .

[6]  J. Nesetril,et al.  Colorings and Homomorphisms of Minor Closed Classes , 2003 .

[7]  Hal A. Kierstead Weak acyclic coloring and asymmetric coloring games , 2006, Discret. Math..

[8]  Victor Reiner,et al.  Combinatorial Laplacians of matroid complexes , 1999 .

[9]  Alexandr V. Kostochka,et al.  Note to the paper of Grünbaum on acyclic colorings , 1976, Discret. Math..

[10]  M. Albertson,et al.  Every planar graph has an acyclic 7-coloring , 1977 .

[11]  Wayne Goddard,et al.  Acyclic colorings of planar graphs , 1991, Discret. Math..

[12]  R. Forman Morse Theory for Cell Complexes , 1998 .

[13]  M. Albertson,et al.  An acyclic analogue to Heawood's theorem , 1978 .

[14]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[15]  Manoj K. Chari On discrete Morse functions and combinatorial decompositions , 2000, Discret. Math..

[16]  Oleg V. Borodin,et al.  On acyclic colorings of planar graphs , 2006, Discret. Math..

[17]  A. V. Kostov cka Acyclic $6$-coloring of planar graphs , 1976 .

[18]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[19]  Bruce A. Reed,et al.  Acyclic Coloring of Graphs , 1991, Random Struct. Algorithms.

[20]  J. Mitchem Every planar graph has an acyclic $8$-coloring , 1974 .

[21]  Bruce A. Reed,et al.  On Star Coloring of Graphs , 2001, WG.

[22]  Caroline J. Klivans Obstructions to Shiftedness , 2005, Discret. Comput. Geom..

[23]  A. U.S.,et al.  On Acyclic Colorings of Graphs on Surfaces , 2002 .

[24]  D. R. Woodall,et al.  Acyclic Colourings of Planar Graphs with Large Girth , 1999 .

[25]  Frank Harary,et al.  Graph Theory , 2016 .