Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j
暂无分享,去创建一个
M. Graham | J. Sollerman | A. Castro-Tirado | S. Nissanke | L. Singer | I. Andreoni | M. Coughlin | F. Foucart | D. Goldstein | M. Soumagnac | K. De | E. Bellm | B. Bolin | S. Anand | M. Rigault | E. Serabyn | R. Dekany | R. Laher | C. Fremling | F. Masci | R. Walters | D. Duev | V. Golkhou | R. Riddle | B. Rusholme | D. Shupe | M. Bulla | A. Sagués Carracedo | A. Valeev | M. Feeney | Michael E. Porter | P. Rosnet | A. Kong | R. Sánchez-Ramírez | Youdong Hu | R. Stein | T. Ahumada | H. Kumar | M. Hankins | S. Reusch | P. Mróz | M. Almualla | E. Kool | N. Guessoum | S. B. Cenko | S. Kulkarni | M. Kasliwal | M. Caballero-Garcia | R. Smith | Roger M. Smith | S. Cenko | S. Kulkarni
[1] R. Kotak,et al. LIGO/Virgo S200115j: No notable candidates in GOTO imaging , 2020 .
[2] M. Coughlin,et al. New Constraints on the Supranuclear Equation of State and the Hubble Constant from Nuclear Physics -- Multi-Messenger Astronomy , 2020, 2002.11355.
[3] F. Foucart,et al. Estimates for disk and ejecta masses produced in compact binary mergers , 2020, Physical Review D.
[4] K. Kawaguchi,et al. Constraint on the Ejecta Mass for Black Hole–Neutron Star Merger Event Candidate S190814bv , 2020, The Astrophysical Journal.
[5] D. A. Kann,et al. LIGO/Virgo S200219ac : No significant candidates in TAROT - FRAM - GRANDMA observations. , 2020 .
[6] V. Lipunov,et al. LIGO/Virgo S200225q: Global MASTER-Net observations report , 2020 .
[7] P. K. Panda,et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .
[8] Andrew L. Miller,et al. A Machine Learning-based Source Property Inference for Compact Binary Mergers , 2019, The Astrophysical Journal.
[9] J. Newman,et al. GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star–Black Hole Merger , 2019, The Astrophysical Journal.
[10] K. Kawaguchi,et al. Diversity of Kilonova Light Curves , 2019, The Astrophysical Journal.
[11] S. Anand. LIGO/Virgo S200105ae: Upper Limits from the Zwicky Transient Facility , 2020 .
[12] S. Anand. LIGO/Virgo S200115j: Candidates from the Zwicky Transient Facility , 2020 .
[13] A. Castro-Tirado,et al. LIGO/Virgo S200105ae: AT2020pq, AT2020ps and AT2020pv 10.4m GTC spectroscopy , 2020 .
[14] R. Stein. LIGO/Virgo S200105ae: Candidates from the Zwicky Transient Facility , 2020 .
[15] O. Salafia,et al. Filling the Mass Gap: How Kilonova Observations Can Unveil the Nature of the Compact Object Merging with the Neutron Star , 2019, The Astrophysical Journal.
[16] N. Christensen,et al. Optimizing multitelescope observations of gravitational-wave counterparts , 2019, Monthly Notices of the Royal Astronomical Society.
[17] Eugene Serabyn,et al. GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR , 2019, The Astrophysical Journal.
[18] Umaa Rebbapragada,et al. Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.
[19] R. Fern'andez,et al. The role of magnetic field geometry in the evolution of neutron star merger accretion discs , 2019, Monthly Notices of the Royal Astronomical Society.
[20] M. Bulla,et al. possis: predicting spectra, light curves, and polarization for multidimensional models of supernovae and kilonovae , 2019, Monthly Notices of the Royal Astronomical Society.
[21] A. Mahabal,et al. Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves , 2019, Astronomy & Astrophysics.
[22] Marek Kowalski,et al. simsurvey: estimating transient discovery rates for the Zwicky transient facility , 2019, Journal of Cosmology and Astroparticle Physics.
[23] Umaa Rebbapragada,et al. The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.
[24] R. Itoh,et al. The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.
[25] Eric Burns,et al. 2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.
[26] J. Sollerman,et al. LIGO/Virgo S190425z: Additional Candidates from the Zwicky Transient Facility. , 2019 .
[27] Umaa Rebbapragada,et al. The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.
[28] Umaa Rebbapragada,et al. The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.
[29] Matthew J. Graham,et al. The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.
[30] A. Miller,et al. A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.
[31] Samaya Nissanke,et al. Remnant baryon mass in neutron star-black hole mergers: Predictions for binary neutron star mimickers and rapidly spinning black holes , 2018, Physical Review D.
[32] S. Smartt,et al. Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations , 2018, Monthly Notices of the Royal Astronomical Society.
[33] Eran O. Ofek,et al. catsHTM: A Tool for Fast Accessing and Cross-matching Large Astronomical Catalogs , 2018, Publications of the Astronomical Society of the Pacific.
[34] S. Vitale,et al. Measuring the Hubble Constant with Neutron Star Black Hole Mergers. , 2018, Physical review letters.
[35] M. Chan,et al. Optimizing searches for electromagnetic counterparts of gravitational wave triggers , 2018, 1803.02255.
[36] B. Metzger,et al. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.
[37] J. Prochaska,et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.
[38] Caltech,et al. PREPARING FOR ADVANCED LIGO: A STAR–GALAXY SEPARATION CATALOG FOR THE PALOMAR TRANSIENT FACTORY , 2017, 1703.07356.
[39] J. Sollerman,et al. Detectability of compact binary merger macronovae , 2016, 1611.09822.
[40] Harald P. Pfeiffer,et al. Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state , 2016, 1611.01159.
[41] Meng-Ru Wu,et al. RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES , 2016, 1605.07218.
[42] K. Ioka,et al. Dynamical mass ejection from black hole-neutron star binaries , 2015, 1502.05402.
[43] Christopher Bebek,et al. The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.
[44] K. Hotokezaka,et al. RADIOACTIVELY POWERED EMISSION FROM BLACK HOLE–NEUTRON STAR MERGERS , 2013, 1310.2774.
[45] S. Rosswog. The multi-messenger picture of compact binary mergers , 2015, 1501.02081.
[46] William H. Lee,et al. ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.
[47] N. T. Zinner,et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.
[48] Bohdan Paczy'nski,et al. Transient Events from Neutron Star Mergers , 1998, astro-ph/9807272.
[49] B. Schutz. Determining the Hubble constant from gravitational wave observations , 1986, Nature.
[50] J. Lattimer,et al. Black-Hole-Neutron-Star Collisions , 1974 .
[51] H. Mcalister. Science Objectives , 2022 .