Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j

[1]  R. Kotak,et al.  LIGO/Virgo S200115j: No notable candidates in GOTO imaging , 2020 .

[2]  M. Coughlin,et al.  New Constraints on the Supranuclear Equation of State and the Hubble Constant from Nuclear Physics -- Multi-Messenger Astronomy , 2020, 2002.11355.

[3]  F. Foucart,et al.  Estimates for disk and ejecta masses produced in compact binary mergers , 2020, Physical Review D.

[4]  K. Kawaguchi,et al.  Constraint on the Ejecta Mass for Black Hole–Neutron Star Merger Event Candidate S190814bv , 2020, The Astrophysical Journal.

[5]  D. A. Kann,et al.  LIGO/Virgo S200219ac : No significant candidates in TAROT - FRAM - GRANDMA observations. , 2020 .

[6]  V. Lipunov,et al.  LIGO/Virgo S200225q: Global MASTER-Net observations report , 2020 .

[7]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[8]  Andrew L. Miller,et al.  A Machine Learning-based Source Property Inference for Compact Binary Mergers , 2019, The Astrophysical Journal.

[9]  J. Newman,et al.  GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star–Black Hole Merger , 2019, The Astrophysical Journal.

[10]  K. Kawaguchi,et al.  Diversity of Kilonova Light Curves , 2019, The Astrophysical Journal.

[11]  S. Anand LIGO/Virgo S200105ae: Upper Limits from the Zwicky Transient Facility , 2020 .

[12]  S. Anand LIGO/Virgo S200115j: Candidates from the Zwicky Transient Facility , 2020 .

[13]  A. Castro-Tirado,et al.  LIGO/Virgo S200105ae: AT2020pq, AT2020ps and AT2020pv 10.4m GTC spectroscopy , 2020 .

[14]  R. Stein LIGO/Virgo S200105ae: Candidates from the Zwicky Transient Facility , 2020 .

[15]  O. Salafia,et al.  Filling the Mass Gap: How Kilonova Observations Can Unveil the Nature of the Compact Object Merging with the Neutron Star , 2019, The Astrophysical Journal.

[16]  N. Christensen,et al.  Optimizing multitelescope observations of gravitational-wave counterparts , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  Eugene Serabyn,et al.  GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR , 2019, The Astrophysical Journal.

[18]  Umaa Rebbapragada,et al.  Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  R. Fern'andez,et al.  The role of magnetic field geometry in the evolution of neutron star merger accretion discs , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  M. Bulla,et al.  possis: predicting spectra, light curves, and polarization for multidimensional models of supernovae and kilonovae , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  A. Mahabal,et al.  Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves , 2019, Astronomy & Astrophysics.

[22]  Marek Kowalski,et al.  simsurvey: estimating transient discovery rates for the Zwicky transient facility , 2019, Journal of Cosmology and Astroparticle Physics.

[23]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[24]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[25]  Eric Burns,et al.  2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[26]  J. Sollerman,et al.  LIGO/Virgo S190425z: Additional Candidates from the Zwicky Transient Facility. , 2019 .

[27]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[28]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[29]  Matthew J. Graham,et al.  The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.

[30]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[31]  Samaya Nissanke,et al.  Remnant baryon mass in neutron star-black hole mergers: Predictions for binary neutron star mimickers and rapidly spinning black holes , 2018, Physical Review D.

[32]  S. Smartt,et al.  Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  Eran O. Ofek,et al.  catsHTM: A Tool for Fast Accessing and Cross-matching Large Astronomical Catalogs , 2018, Publications of the Astronomical Society of the Pacific.

[34]  S. Vitale,et al.  Measuring the Hubble Constant with Neutron Star Black Hole Mergers. , 2018, Physical review letters.

[35]  M. Chan,et al.  Optimizing searches for electromagnetic counterparts of gravitational wave triggers , 2018, 1803.02255.

[36]  B. Metzger,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[37]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[38]  Caltech,et al.  PREPARING FOR ADVANCED LIGO: A STAR–GALAXY SEPARATION CATALOG FOR THE PALOMAR TRANSIENT FACTORY , 2017, 1703.07356.

[39]  J. Sollerman,et al.  Detectability of compact binary merger macronovae , 2016, 1611.09822.

[40]  Harald P. Pfeiffer,et al.  Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state , 2016, 1611.01159.

[41]  Meng-Ru Wu,et al.  RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES , 2016, 1605.07218.

[42]  K. Ioka,et al.  Dynamical mass ejection from black hole-neutron star binaries , 2015, 1502.05402.

[43]  Christopher Bebek,et al.  The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.

[44]  K. Hotokezaka,et al.  RADIOACTIVELY POWERED EMISSION FROM BLACK HOLE–NEUTRON STAR MERGERS , 2013, 1310.2774.

[45]  S. Rosswog The multi-messenger picture of compact binary mergers , 2015, 1501.02081.

[46]  William H. Lee,et al.  ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.

[47]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[48]  Bohdan Paczy'nski,et al.  Transient Events from Neutron Star Mergers , 1998, astro-ph/9807272.

[49]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[50]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[51]  H. Mcalister Science Objectives , 2022 .