Theory of DC operating points of transistor networks

Qualitative properties of resistive networks containing multiterminal nonlinear elements: no gain properties, " IEEE Trans.

[1]  Ute Feldmann,et al.  Algorithms for modern circuit simulation , 1992 .

[2]  M. Hasler,et al.  Algorithms for the qualitative analysis of nonlinear resistive circuits , 1989, IEEE International Symposium on Circuits and Systems,.

[3]  Ljiljana Trajkovic,et al.  Replacing a transistor with a compound transistor , 1988 .

[4]  A.N. Willson,et al.  Negative differential resistance in two-transistor one-ports with no internal sources , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[5]  I. Getreu,et al.  Modeling the bipolar transistor , 1978 .

[6]  L. Chua Nonlinear circuits , 1984 .

[7]  L. T. Watson,et al.  Globally convergent homotopy methods: a tutorial , 1989, Conference on Numerical Ordinary Differential Equations.

[8]  Jingtang Wu,et al.  A two-transistor negative-resistance device without feedback structure , 1990, Int. J. Circuit Theory Appl..

[9]  Martin Hasler,et al.  Monotonicity in nonlinear resistive circuits , 1990, IEEE International Symposium on Circuits and Systems.

[10]  Leon O. Chua,et al.  Negative resistance devices , 1983 .

[11]  Michael M. Green,et al.  (Almost) half of any circuit's operating points are unstable , 1994 .

[12]  A. Willson,et al.  A fundamental result concerning the topology of transistor circuits with multiple equilibria , 1980 .

[13]  J. Ebers,et al.  Large-Signal Behavior of Junction Transistors , 1954, Proceedings of the IRE.

[14]  Leon O. Chua,et al.  Cmos latchup theory , 1989 .

[15]  Layne T. Watson,et al.  Sframe: An efficient system for detailed DC simulation of bipolar analog integrated circuits using continuation methods , 1993 .

[16]  Martin Hasler,et al.  Non-linear non-reciprocal resistive circuits with a structurally unique solution , 1986 .

[17]  Debasis Mitra,et al.  When are transistors passive , 1971 .

[18]  Alan N. Willson,et al.  Determining when a DC operating point is unstable: a new algorithm for SPICE , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[19]  Michał Tadeusiewicz,et al.  A method for finding bounds on all the DC solutions of transistor circuits , 1992 .

[20]  Jr. A. Willson The no-gain property for networks containing three-terminal elements , 1975 .

[21]  Existence of hybrid matrices for active n‐ports encountered in the analysis of transistor networks , 1979 .

[22]  W. Mathis,et al.  Finding all DC equilibrium points of nonlinear circuits , 1989, Proceedings of the 32nd Midwest Symposium on Circuits and Systems,.

[23]  A. N. Willson,et al.  On a determinant expansion in the theory of two-transistor circuits , 1990 .

[24]  D.J. Rose,et al.  CAzM: A circuit analyzer with macromodeling , 1983, IEEE Transactions on Electron Devices.

[25]  Kiyotaka Yamamura,et al.  A globally and quadratically convergent algorithm for solving nonlinear resistive networks , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[26]  Michael M. Green,et al.  How to identify unstable DC operating points , 1992 .

[27]  A. N. Willson,et al.  Global convergence of Newton's method in the DC analysis of single-transistor networks , 1982 .

[28]  Leon O. Chua,et al.  Negative resistance devices: Part II , 1984 .

[29]  R.C. Melville,et al.  Finding DC operating points of transistor circuits using homotopy methods , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[30]  L. Trajkovic,et al.  Passivity and no-gain properties establish global convergence of a homotopy method for DC operating points , 1990, IEEE International Symposium on Circuits and Systems.

[31]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[32]  F. Wu Existence of an operating point for a nonlinear circuit using the degree of mapping , 1974 .

[33]  R.C. Melville,et al.  Improving DC convergence in a circuit simulator using a homotopy method , 1991, Proceedings of the IEEE 1991 Custom Integrated Circuits Conference.

[34]  L. Chua,et al.  Uniqueness of solution for nonlinear resistive circuits containing CCCS's or VCVS's whose controlling coefficients are finite , 1986 .

[36]  A. Willson,et al.  Existence criteria for dc solutions of nonlinear networks which involve the independent sources , 1984 .

[37]  A. Willson,et al.  Topological criteria for establishing the uniqueness of solutions to the dc equations of transistor networks , 1977 .

[38]  Alan N. Willson,et al.  Stabilizing polynomials by making their higher-order coefficients sufficiently small , 1992 .

[39]  Leon O. Chua,et al.  Bipolar - JFET - MOSFET negative resistance devices , 1985 .

[40]  Alan N. Willson,et al.  On the stability of operating points in two-transistor circuits , 1990, IEEE International Symposium on Circuits and Systems.

[42]  Ljiljana Trajkovic,et al.  Artificial parameter homotopy methods for the DC operating point problem , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[43]  Ljiljana Trajkovic,et al.  Complementary two-transistor circuits and negative differential resistance , 1990 .

[44]  L. Chua,et al.  On the application of degree theory to the analysis of resistive nonlinear networks , 1977 .

[45]  I. W. Sandberg,et al.  Some network-theoretic properties of nonlinear DC transistor networks , 1969 .

[46]  Alan N. Willson,et al.  On the uniqueness of a circuit's DC operating point when its transistors have variable current gains , 1989, Proceedings of the 32nd Midwest Symposium on Circuits and Systems,.

[47]  L. Watson Globally convergent homotopy algorithms for nonlinear systems of equations , 1990 .

[48]  Joos Vandewalle,et al.  A globally convergent algorithm for solving a broad class of nonlinear resistive circuits , 1990, IEEE International Symposium on Circuits and Systems.

[49]  Jr. A. Willson,et al.  Some aspects of the theory of nonlinear networks , 1973 .

[50]  Tetsuo Nishi,et al.  On the number of solutions of a class of nonlinear resistive circuits , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[51]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[52]  L. Chua,et al.  Tracing solution curves of nonlinear equa-tions with sharp turning points , 1984 .

[53]  Joos Vandewalle,et al.  Variable dimension algorithms for solving resistive circuits , 1990, Int. J. Circuit Theory Appl..

[54]  M. J. Hasler,et al.  On the number of solutions of piecewise-linear resistive circuits , 1989 .

[55]  Wolfgang Mathis,et al.  Theorie nichtlinearer Netzwerke , 1987 .

[56]  Martin Hasler,et al.  Resistive circuit topologies that admit several solutions , 1990, Int. J. Circuit Theory Appl..

[57]  D. Rose,et al.  Global approximate Newton methods , 1981 .

[58]  Jr. A. Willson On the topology of FET circuits and the uniqueness of their dc operating points , 1980 .

[59]  L. Chua,et al.  Qualitative properties of resistive networks containing multiterminal nonlinear elements: No gain properties , 1977 .