An Overview of the Numerical Approaches to Water Hammer Modelling: The Ongoing Quest for Practical and Accurate Numerical Approaches

Here, recent developments in the key numerical approaches to water hammer modelling are summarized and critiqued. This paper summarizes one-dimensional modelling using the finite difference method (FDM), the method of characteristics (MOC), and especially the more recent finite volume method (FVM). The discussion is briefly extended to two-dimensional modelling, as well as to computational fluid dynamics (CFD) approaches. Finite volume methods are of particular note, since they approximate the governing partial differential equations (PDEs) in a volume integral form, thus intrinsically conserving mass and momentum fluxes. Accuracy in transient modelling is particularly important in certain (typically more nuanced) applications, including fault (leakage and blockage) detection. The FVM, first advanced using Godunov’s scheme, is preferred in cases where wave celerity evolves over time (e.g., due to the release of air) or due to spatial changes (e.g., due to changes in wall thickness). Both numerical and experimental studies demonstrate that the first-order Godunov’s scheme compares favourably with the MOC in terms of accuracy and computational speed; with further advances in the FVM schemes, it progressively achieves faster and more accurate codes. The current range of numerical methods is discussed and illustrated, including highlighting both their limitations and their advantages.

[1]  I. A. Sibetheros,et al.  Spline Interpolations for Water Hammer Analysis , 1987 .

[2]  Dazhuan Wu,et al.  Three-dimensional computational fluid dynamics simulation of valve-induced water hammer , 2017 .

[3]  Pierre Archambeau,et al.  An exact Riemann solver and a Godunov scheme for simulating highly transient mixed flows , 2011, J. Comput. Appl. Math..

[4]  E. Wylie,et al.  Characteristics Method Using Time‐Line Interpolations , 1983 .

[5]  Bryan W. Karney,et al.  Comprehensive adaptive modelling of 1-D unsteady pipe network hydraulics , 2020 .

[6]  P. Pradeep Kumar,et al.  Study of startup transients and power ramping of natural circulation boiling systems , 2009 .

[7]  J. D. Nault,et al.  Generalized Flexible Method for Simulating Transient Pipe Network Hydraulics , 2018, Journal of Hydraulic Engineering.

[8]  Kotaro Onizuka,et al.  System Dynamics Approach to Pipe Network Analysis , 1986 .

[9]  Feifei Zheng,et al.  State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management , 2020 .

[10]  M. Hanif Chaudhry,et al.  Estimation of Decay Coefficients for Unsteady Friction for Instantaneous, Acceleration-Based Models , 2012 .

[11]  Mohamed Salah Ghidaoui,et al.  Efficient quasi-two-dimensional model for water hammer problems , 2003 .

[12]  Alan Vardy,et al.  Estimating friction errors in MOC analyses of unsteady pipe flows , 2007 .

[13]  M. Hanif Chaudhry,et al.  Modeling of Constituent Transport in Unsteady Flows in Pipe Networks , 1998 .

[14]  E. M. Wahba,et al.  Runge–Kutta time‐stepping schemes with TVD central differencing for the water hammer equations , 2006 .

[15]  J. Eggels,et al.  Direct and Large Eddy Simulation of Turbulent Flow in a Cylindrical Pipe Geometry , 1994 .

[16]  Bryan W. Karney,et al.  Numerical methods for modeling transient flow in distribution systems , 2005 .

[17]  E. Todini,et al.  Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks , 2013 .

[18]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[19]  Bryan W. Karney,et al.  EFFICIENT CALCULATION OF TRANSIENT FLOW IN SIMPLE PIPE NETWORKS , 1992 .

[20]  Mark J. Sundquist,et al.  Fixed-Grid Characteristics for Pipeline Transients , 1977 .

[21]  Arturo S. Leon,et al.  Efficient Second-Order Accurate Shock-Capturing Scheme for Modeling One- and Two-Phase Water Hammer Flows , 2008 .

[22]  Mohammad Hadi Afshar,et al.  Water hammer simulation by implicit method of characteristic , 2008 .

[23]  Iztok Tiselj,et al.  Some Comments on the Behavior of the RELAP5 Numerical Scheme at Very Small Time Steps , 2000 .

[24]  Eduardo Pereyra,et al.  Development of a fast transient simulator for gas–liquid two-phase flow in pipes , 2013 .

[25]  Yonggang Cheng,et al.  Simulation of Hydraulic Transients in Hydropower Systems Using the 1-D-3-D Coupling Approach , 2012 .

[26]  Romuald Szymkiewicz,et al.  Analysis of unsteady pipe flow using the modified finite element method , 2004 .

[27]  Bryan W. Karney,et al.  Improved Rigid Water Column Formulation for Simulating Slow Transients and Controlled Operations , 2016 .

[28]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[29]  Michael Griebel,et al.  A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations , 2010, Computer Science - Research and Development.

[30]  Hanif M. Chaudhry,et al.  Applied Hydraulic Transients , 1979 .

[31]  Chunze Zhang,et al.  GPU acceleration of FSI simulations by the immersed boundary-lattice Boltzmann coupling scheme , 2016, Comput. Math. Appl..

[32]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[33]  Ljubomir Budinski,et al.  Application of the LBM with adaptive grid on water hammer simulation , 2016 .

[34]  Qiang Sun,et al.  Efficient Quasi-Two-Dimensional Water Hammer Model on a Characteristic Grid , 2016 .

[35]  Masashi Shimada,et al.  Graph‐Theoretical Model for Slow Transient Analysis of Pipe Networks , 1989 .

[36]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[37]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[38]  Ulrich Seidel,et al.  Compressible simulation of rotor-stator interaction in pump-turbines , 2010 .

[39]  M. Hanif Chaudhry,et al.  COMPUTATION OF ENERGY DISSIPATION IN TRANSIENT FLOW , 1997 .

[40]  Gretar Tryggvason,et al.  Computational Methods for Multiphase Flow: Frontmatter , 2007 .

[41]  Ovadia Shoham,et al.  Transient two-phase flow behavior in pipelines-experiment and modeling , 1994 .

[42]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[43]  Alan Vardy,et al.  A characteristics model of transient friction in pipes , 1991 .

[44]  Enrique Cabrera,et al.  Modelling Water Distribution Networks: From Steady Flow to Water Hammer , 1995 .

[45]  H. Mahdizadeh Numerical modelling of one- and two-dimensional water hammer problems using a modified wave propagation algorithm and turbulence model , 2018, Journal of Hydraulic Research.

[46]  Martin F. Lambert,et al.  Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools , 2008 .

[47]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[48]  Chintu Lai,et al.  Water-Hammer Analysis Including Fluid Friction , 1962 .

[49]  Ezio Todini,et al.  Extending the global gradient algorithm to unsteady flow extended period simulations of water distribution systems , 2011 .

[50]  Vincent Guinot,et al.  Godunov-type Schemes: An Introduction for Engineers , 2003 .

[51]  J. Westerweel,et al.  Direct numerical simulation of turbulent pipe flow - A comparison between simulation and experiment at low Re-number , 1993 .

[52]  Xu Lai,et al.  Simulation of the load rejection transient process of a francis turbine by using a 1-D-3-D coupling approach , 2014 .

[53]  Frédéric Coquel,et al.  Convergence of time–space adaptive algorithms for nonlinear conservation laws , 2012 .

[54]  Wei Diao,et al.  Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations , 2016 .

[55]  E. F. Toro,et al.  A linearized Riemann solver for the time-dependent Euler equations of gas dynamics , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[56]  Martin F. Lambert,et al.  Efficient approach toward the application of the Godunov method to hydraulic transients , 2020 .

[57]  Martin F. Lambert,et al.  Parameters affecting water-hammer wave attenuation, shape and timing—Part 2: Case studies , 2008 .

[58]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[59]  Budugur Lakshminarayana,et al.  Low-Reynolds-number k-epsilon model for unsteady turbulent boundary-layer flows , 1993 .

[60]  Chao Wang,et al.  Water Hammer Simulation Using Explicit–Implicit Coupling Methods , 2015 .

[61]  Hossein M. V. Sam Ani,et al.  Transient flow in pipe networks , 2002 .

[62]  A. Vardy,et al.  TRANSIENT TURBULENT FRICTION IN SMOOTH PIPE FLOWS , 2003 .

[63]  Chintu Lai Comprehensive Method of Characteristics Models for Flow Simulation , 1988 .

[64]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[65]  Mohamed Salah Ghidaoui,et al.  Investigation of turbulence behavior in pipe transient using a k–εmodel , 2006 .

[66]  Philip L. Roe,et al.  Efficient construction and utilisation of approximate riemann solutions , 1985 .

[67]  Giuseppe Pascazio,et al.  An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster , 2017, Comput. Phys. Commun..

[68]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[69]  A. Tijsseling,et al.  Numerical investigations of water-hammer with column-separation induced by vaporous cavitation using a one-dimensional Finite-Volume approach , 2018, Journal of Fluids and Structures.

[70]  E. Wahba Turbulence modeling for two-dimensional water hammer simulations in the low Reynolds number range , 2009 .

[71]  B. Riemann über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite , 1860 .

[72]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[73]  D. Thomson,et al.  Large‐Eddy simulations of the neutral‐static‐stability planetary boundary layer , 1987 .

[74]  Boran Zhang,et al.  Experimental and Numerical Simulation of Water Hammer in Gravitational Pipe Flow with Continuous Air Entrainment , 2018, Water.

[75]  Boundary condition treatment in 2×2 systems of propagation equations , 1998 .

[76]  S. Osher,et al.  One-sided difference approximations for nonlinear conservation laws , 1981 .

[77]  Chen Naixiang Study on three-dimensional flow in surge tank with consideration of pipeline property , 2012 .

[78]  Chao Xu,et al.  Optimal boundary control for water hammer suppression in fluid transmission pipelines , 2014, Comput. Math. Appl..

[79]  V. Streeter Valve Stroking to Control Water Hammer , 1962 .

[80]  Martin Rohde,et al.  Experimental and numerical investigations on flashing-induced instabilities in a single channel , 2009 .

[81]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[82]  M. Ghidaoui,et al.  Godunov-Type Solutions for Water Hammer Flows , 2004 .

[83]  Godunov-Type Solutions for Transient Pipe Flow Implicitly Incorporating Brunone Unsteady Friction , 2021, Journal of Hydraulic Engineering.

[84]  Anton Bergant,et al.  Godunov-Type Solutions with Discrete Gas Cavity Model for Transient Cavitating Pipe Flow , 2018 .

[85]  Vincent Guinot,et al.  Riemann solvers for water hammer simulations by Godunov method , 2000 .

[86]  Mehrdad Raisee,et al.  Unsteady turbulent pipe flow due to water hammer using k–θ turbulence model , 2009 .

[87]  Janez Gale,et al.  TWO-FLUID MODEL OF THE WAHA CODE FOR SIMULATIONS OF WATER HAMMER TRANSIENTS , 2008 .

[88]  M. Hanif Chaudhry,et al.  Unsteady Friction in Rough Pipes , 2001 .

[89]  A. Vardy,et al.  Transient, turbulent, smooth pipe friction , 1995 .

[90]  E. D. Hughes,et al.  Characteristics and Stability Analyses of Transient One-Dimensional Two-Phase Flow Equations and Their Finite Difference Approximations , 1978 .

[91]  Mohamed Salah Ghidaoui,et al.  A Review of Water Hammer Theory and Practice , 2005 .

[92]  R. H. Sanders,et al.  The possible relation of the 3-kiloparsec arm to explosions in the galactic nucleus , 1974 .

[93]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[94]  Y. Hwang,et al.  A fast Godunov method for the water‐hammer problem , 2002 .

[95]  Bryan W. Karney,et al.  Flexible Discretization Algorithm for Fixed-Grid MOC in Pipelines , 1997 .

[96]  Angus R. Simpson,et al.  Cavitation inception in pipeline column separation , 1999 .

[97]  Ovadia Shoham,et al.  Simplified transient solution and simulation of two-phase flow in pipelines , 1989 .

[98]  Bryan W. Karney,et al.  A practical overview of unsteady pipe flow modeling: from physics to numerical solutions , 2017 .

[99]  Wenjing Lei,et al.  Capability of RELAP5 code to simulate the thermal-hydraulic characteristics of open natural circulation , 2017 .

[100]  As Arris Tijsseling,et al.  Rapid filling of pipelines with the SPH particle method , 2011 .

[101]  Wenxi Tian,et al.  Numerical simulation and optimization on valve-induced water hammer characteristics for parallel pump feedwater system , 2008 .

[102]  M. Szydłowski Two-dimensional shallow water model for rapidly and gradually varied flow , 2001 .

[103]  Moez Louati,et al.  On the dissipation mechanism of lattice Boltzmann method when modeling 1-d and 2-d water hammer flows , 2019, Computers & Fluids.

[104]  A. Tijsseling,et al.  Simulating water hammer with corrective smoothed particle method , 2012 .

[105]  Jiayang Wu,et al.  GPU Acceleration of Hydraulic Transient Simulations of Large-Scale Water Supply Systems , 2018 .

[106]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[107]  Stojan Petelin,et al.  Modelling of Two-Phase Flow with Second-Order Accurate Scheme , 1997 .

[108]  C. Li,et al.  Conservative Characteristics‐Based Schemes for Mass Transport , 1994 .

[109]  Mohamed Salah Ghidaoui,et al.  Applicability of Quasisteady and Axisymmetric Turbulence Models in Water Hammer , 2002 .

[110]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[111]  Bryan W. Karney,et al.  Transient Analysis of Water Distribution Systems , 1990 .

[112]  Vincent Guinot Numerical simulation of two-phase flow in pipes using Godunov method , 2001 .

[113]  Alireza Riasi,et al.  Cavitating flow during water hammer using a generalized interface vaporous cavitation model , 2012 .

[114]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[115]  Arturo S. Leon,et al.  Application of Godunov-type schemes to transient mixed flows , 2009 .

[116]  Direct Riemann solvers for the time-dependent Euler equations , 1995 .

[117]  Bryan W. Karney,et al.  Adaptive Hybrid Transient Formulation for Simulating Incompressible Pipe Network Hydraulics , 2016 .

[118]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[119]  ALI A M GAD,et al.  Impact of pipes networks simplification on water hammer phenomenon , 2014 .

[120]  M. Shimada,et al.  Interpolation Errors in Rectangular and Diamond Characteristic Grids , 2008 .

[121]  Alan Vardy,et al.  Time-Line Interpolation Errors in Pipe Networks , 2006 .

[122]  B. Karney,et al.  ENERGY ESTIMATES FOR DISCRETIZATION ERRORS IN WATER HAMMER PROBLEMS , 1998 .

[123]  Giuseppe Pezzinga,et al.  QUASI-2D MODEL FOR UNSTEADY FLOW IN PIPE NETWORKS , 1999 .

[124]  B. Karney,et al.  Equivalent Differential Equations in Fixed‐Grid Characteristics Method , 1994 .

[125]  Jinn-Chuang Yang,et al.  On the use of the reach-back characteristics method for calculation of dispersion , 1991 .