Advances in Spectral Optical Code-Division Multiple-Access Communications

Code-division multiple-access (CDMA) has flourished as a successful wireless networking technology in mobile cellular telephony, and wireless local area networks (LAN) such as the unlicensed industry, science, and medicine (ISM) bands. The commercial exploitation of the benefits of CDMA raises the question as to whether optical code-based communications offer significant benefits to an optical network and what are the technologies that enable code-based optical networks. Recent investigations of optical CDMA (OCDMA) strategies have addressed this question through numerous laboratory-based test-bed studies of multiuser link and recent experimental field trials conducted on in-the-ground fiber. OCDMA requires its own physical layer technologies that are distinctly different from widely pursued wavelength-division-multiplexed (WDM) all-optical networks. Simulations of multiuser performance predict ultimate link capacity and the performance of broadcast and select synchronous nets with strong central management as well as asynchronous architectures with reduced centralized management.

[1]  Wei Cong,et al.  Error-free, 12-user, 10 Gbit/s/user O-CDMA network testbed without FEC - eScholarship , 2005 .

[2]  V.J. Hernandez,et al.  An eight-user time-slotted SPECTS O-CDMA testbed: demonstration and simulations , 2005, Journal of Lightwave Technology.

[3]  Jawad A. Salehi,et al.  Limits to the encoding and bounds on the performance of coherent ultrashort light pulse code-division multiple-access , 1992, IEEE Trans. Commun..

[4]  A.M. Weiner,et al.  Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation , 2001, IEEE Photonics Technology Letters.

[5]  J P Heritage,et al.  Encoding and decoding of femtosecond pulses. , 1988, Optics letters.

[6]  Stephen G. Wilson,et al.  Multiuser ML sequence estimator for convolutionally coded asynchronous DS-CDMA systems , 1996, IEEE Trans. Commun..

[7]  Ghang-Ho Lee,et al.  Optical Dispersion Compensator With$≫$4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM) , 2006, IEEE Photonics Technology Letters.

[8]  Wei Cong,et al.  High performance 70 Gbit/s SPECTS optical-CDMA network testbed , 2004 .

[9]  Shijun Xiao,et al.  Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA) , 2005, Journal of Lightwave Technology.

[10]  Andrew J. Viterbi,et al.  When not to spread spectrum - A sequel , 1985, IEEE Communications Magazine.

[11]  Anh-Vu Pham,et al.  Demonstration of Spectral Phase O-CDMA Encoding and Decoding in Monolithically Integrated Arrayed-Waveguide-Grating-Based Encoder , 2006, IEEE Photonics Technology Letters.

[12]  Martin M. Fejer,et al.  Fully dispersion compensated ∼500 fs pulse transmission over 50 km SMF and application to ultrafast O-CDMA , 2005 .

[13]  Q. Bi Performance analysis of a CDMA cellular system , 1992, [1992 Proceedings] Vehicular Technology Society 42nd VTS Conference - Frontiers of Technology.

[14]  W. Chujo,et al.  Highly spectral-efficient optical code-division multiplexing transmission system , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Andrew M. Weiner,et al.  Experimental investigation of security issues in OCDMA: a code-switching scheme , 2005 .

[16]  B. Wu,et al.  Secure communications over a public fiber-optical network , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[17]  S. Galli,et al.  Spectrally efficient optical CDMA using coherent phase-frequency coding , 2005, IEEE Photonics Technology Letters.

[18]  N. Doran,et al.  Nonlinear-optical loop mirror. , 1988, Optics letters.

[19]  Stefano Galli,et al.  DWDM-compatible spectrally phase encoded optical CDMA , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[20]  V.J. Hernandez,et al.  Spectral phase-encoded time-spreading (SPECTS) optical code-division multiple access for terabit optical access networks , 2004, Journal of Lightwave Technology.

[21]  A.M. Weiner,et al.  Reconfigurable all-optical code translation in spectrally phase-coded O-CDMA , 2005, Journal of Lightwave Technology.

[22]  A.M. Weiner,et al.  Four-user, 2.5-Gb/s, spectrally coded OCDMA system demonstration using low-power nonlinear processing , 2004, Journal of Lightwave Technology.

[23]  S.J.B. Yoo,et al.  Electrical subharmonic hybrid mode locking of a colliding pulse mode-locked laser at 28 GHz , 2005, IEEE Photonics Technology Letters.

[24]  Andrew M. Weiner,et al.  Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor , 1986 .

[25]  Martin M. Fejer,et al.  1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO 3 waveguides , 1999 .

[26]  J P Heritage,et al.  Picosecond pulse shaping by spectral phase and amplitude manipulation. , 1985, Optics letters.

[27]  M. Stern,et al.  A simple femtosecond optical third-order disperser , 1991 .

[28]  A.J. Viterbi,et al.  Wireless digital communication: a view based on three lessons learned , 1991, IEEE Communications Magazine.

[29]  B. Eggleton,et al.  Long periodic superstructure Bragg gratings in optical fibres , 1994 .

[30]  A. Agarwal,et al.  Spectrally Efficient Six-User Coherent OCDMA System Using Reconfigurable Integrated Ring Resonator Circuits , 2006, IEEE Photonics Technology Letters.

[31]  K. Kitayama,et al.  High-performance optical code generation and recognition by use of a 511-chip, 640-Gchip/s phase-shifted superstructured fiber Bragg grating. , 2005, Optics letters.

[32]  A. Weiner,et al.  Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals. , 2000, Optics letters.

[33]  V.J. Hernandez,et al.  Demonstration of an error-free 4 /spl times/ 10 Gb/s multiuser SPECTS O-CDMA network testbed , 2004, IEEE Photonics Technology Letters.

[34]  Andrew M. Weiner,et al.  Fully dispersion-compensated ~500 fs pulse transmission over 50 km single-mode fiber , 2005 .

[35]  Xu Wang,et al.  Demonstration of over 128-gb/s-capacity (12-User/spl times/10.71-gb/s/user) asynchronous OCDMA using FEC and AWG-based multiport optical encoder/decoders , 2006, IEEE Photonics Technology Letters.

[36]  W. Chujo,et al.  1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/WDM (4 OCDM x 40 WDM x 40 Gb/s) transmission experiment using optical hard thresholding , 2002, IEEE Photonics Technology Letters.

[37]  C. Langrock,et al.  Fully dispersion compensated /spl sim/500 fs pulse transmission over 50 km SMF and application to ultrafast O-CDMA , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[38]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[39]  S.J.B. Yoo,et al.  SPECTS O-CDMA 80.8-km BOSSNET Field Trial using a Compact, Fully Integrated, AWG-Based Encoder/Decoder , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[40]  K. Kitayama,et al.  High reflectivity superstructured FBG for coherent optical code generation and recognition. , 2004, Optics express.

[41]  A.M. Weiner,et al.  Four-user 10-Gb/s spectrally phase-coded O-CDMA system operating at /spl sim/30 fJ/bit , 2005, IEEE Photonics Technology Letters.

[42]  M. Fejer,et al.  Low-power spectral phase correlator using periodically poled LiNbO3 waveguides , 2001, IEEE Photonics Technology Letters.

[43]  A. Agarwal,et al.  Fully-programmable ring resonator based integrated photonic circuit for phase coherent applications , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[44]  L. B. Milstein,et al.  Theory of Spread-Spectrum Communications - A Tutorial , 1982, IEEE Transactions on Communications.

[45]  S. Galli,et al.  Optical network compatibility demonstration of O-CDMA based on hyperfine spectral phase coding , 2004, The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004..

[46]  V.J. Hernandez,et al.  Security-Enhanced SPECTS O-CDMA Demonstration Across 150 km Field Fiber , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[47]  Shijun Xiao,et al.  A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory , 2004, IEEE Journal of Quantum Electronics.

[48]  Xu Wang,et al.  Analysis of beat noise in coherent and incoherent time-spreading OCDMA , 2004, Journal of Lightwave Technology.

[49]  Andrew M. Weiner,et al.  Bit error rate performance of ultrashort-pulse optical CDMA detection under multi-access interference , 2000 .

[50]  Periklis Petropoulos,et al.  A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings , 2001 .

[51]  Andrew M. Weiner,et al.  High-resolution femtosecond pulse shaping , 1988 .

[52]  Andrew M. Weiner,et al.  Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications , 1997 .

[53]  N. Fontaine,et al.  Phase characterization of an InP based optical-CDMA encoder using frequency-resolved optical gating (FROG) , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[54]  Martin M. Fejer,et al.  Multi-user, 10Gb/s spectrally phase coded O-CDMA system with hybrid chip and slot-level timing coordination , 2004, IEICE Electron. Express.

[55]  T.H. Shake Confidentiality performance of spectral-phase-encoded optical CDMA , 2005, Journal of Lightwave Technology.

[56]  Harshad Prabhakar Sardesai,et al.  Femtosecond encoder-decoders and ultrafast nonlinear thresholders and their integration in a femtosecond code division multiple access communication system test-bed , 1998 .

[57]  Paul D. Alexander,et al.  Iterative multiuser interference reduction: turbo CDMA , 1999, IEEE Trans. Commun..

[58]  T.H. Shake,et al.  Security performance of optical CDMA Against eavesdropping , 2005, Journal of Lightwave Technology.

[59]  P. Toliver,et al.  Optical-CDMA incorporating phase coding of coherent frequency bins: concept, simulation, experiment , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[60]  K. Kitayama,et al.  Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG en/decoder , 2006, Journal of Lightwave Technology.

[61]  Joseph Y. Hui Pattern Code Modulation and Optical Decoding - A Novel Code-Division Multiplexing Technique for Multifiber Networks , 1985, IEEE Journal on Selected Areas in Communications.

[62]  A.J. Viterbi,et al.  Spread spectrum communications: myths and realities , 2002, IEEE Communications Magazine.

[63]  Ken-ichi Kitayama,et al.  Code division multiplexing lightwave networks based upon optical code conversion , 1998, IEEE J. Sel. Areas Commun..

[64]  Hirokazu Takenouchi,et al.  Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating , 1999 .

[65]  A. Agarwal,et al.  Network applications of cascaded passive code translation for WDM-compatible spectrally phase-encoded optical CDMA , 2005, Journal of Lightwave Technology.

[66]  J P Heritage,et al.  Synthesis of phase-coherent, picosecond optical square pulses. , 1986, Optics letters.

[67]  T. Erdogan Fiber grating spectra , 1997 .

[68]  A M Weiner,et al.  Fully dispersion-compensated approximately 500 fs pulse transmission over 50 km single-mode fiber. , 2005, Optics letters.

[69]  M. Shirasaki Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. , 1996, Optics letters.

[70]  A.M. Weiner,et al.  Experimental Investigation of Security Issues in O-CDMA , 2006, Journal of Lightwave Technology.

[71]  Andrew J. Viterbi,et al.  On the capacity of a cellular CDMA system , 1991 .

[72]  R. Dixon Why spread spectrum? , 1975, Communications Society.

[73]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[74]  J. P. Sokoloff,et al.  A terahertz optical asymmetric demultiplexer (TOAD) , 1993, IEEE Photonics Technology Letters.

[75]  S.J.B. Yoo,et al.  A sixteen-user time-slotted SPECTS O-CDMA network testbed , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[76]  S. J. B. Yoo,et al.  A novel monolithically integrated Mach-Zehnder wavelength converter using cross modulation in electro-absorber , 2005 .

[77]  Wei Cong,et al.  Demonstration of 160- and 320-Gb/s SPECTS O-CDMA network testbeds , 2006, IEEE Photonics Technology Letters.

[78]  S.J.B. Yoo,et al.  Monolithically integrated InP-based photonic chip development for O-CDMA systems , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[79]  Andrew M. Weiner,et al.  Coherent ultrashort light pulse code-division multiple access communication systems , 1990 .

[80]  Zhi Ding,et al.  A 320-Gb/s Capacity (32-User $\times$ 10 Gb/s) SPECTS O-CDMA Network Testbed With Enhanced Spectral Efficiency Through Forward Error Correction , 2007, Journal of Lightwave Technology.

[81]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[82]  L. B. Milstein,et al.  Interference rejection techniques in spread spectrum communications , 1988, Proc. IEEE.

[83]  S. Tamura,et al.  Optical code-multiplex transmission by gold sequences , 1985 .

[84]  Nick Doran,et al.  Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer , 1990 .

[85]  I. Brener,et al.  1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides , 1999, IEEE Photonics Technology Letters.

[86]  Paul R. Prucnal,et al.  Spread spectrum fiber-optic local area network using optical processing , 1986 .

[87]  Andrew M. Weiner,et al.  Spectrally coded O-CDMA system with four users at 2.5 Gbit/s using low power nonlinear processing , 2004 .