Local Composite Quantile Regression for Regression Discontinuity

We introduce the local composite quantile regression (LCQR) to causal inference in regression discontinuity (RD) designs. Kai et al. (2010) study the efficiency property of LCQR, while we show that its nice boundary performance translates to accurate estimation of treatment effects in RD under a variety of data generating processes. Moreover, we propose a bias-corrected and standard error-adjusted t-test for inference, which leads to confidence intervals with good coverage probabilities. A bandwidth selector is also discussed. For illustration, we conduct a simulation study and revisit a classic example from Lee (2008). A companion R package rdcqr is developed.

[1]  David S. Lee Randomized experiments from non-random selection in U.S. House elections , 2005 .

[2]  Zhibiao Zhao,et al.  EFFICIENT REGRESSIONS VIA OPTIMALLY COMBINING QUANTILE INFORMATION , 2014, Econometric Theory.

[3]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[4]  LOCAL COMPOSITE QUANTILE REGRESSION SMOOTHING: A FLEXIBLE DATA STRUCTURE AND CROSS-VALIDATION , 2020, Econometric Theory.

[5]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[6]  Timothy B. Armstrong,et al.  Simple and Honest Confidence Intervals in Nonparametric Regression , 2016, Quantitative Economics.

[7]  David S. Lee,et al.  Regression Discontinuity Designs in Economics , 2009 .

[8]  Jianqing Fan,et al.  On automatic boundary corrections , 1997 .

[9]  Douglas L. Miller,et al.  Does Head Start Improve Children's Life Chances? Evidence from a Regression Discontinuity Design , 2005, SSRN Electronic Journal.

[10]  Runze Li,et al.  Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes. , 2016, Journal of econometrics.

[11]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[12]  J. Hahn,et al.  IDENTIFICATION AND ESTIMATION OF TREATMENT EFFECTS WITH A REGRESSION-DISCONTINUITY DESIGN , 2001 .

[13]  Max H. Farrell,et al.  Regression Discontinuity Designs Using Covariates , 2018, Review of Economics and Statistics.

[14]  Quantile Treatment Effects in the Regression Discontinuity Design , 2008 .

[15]  Sebastian Calonico,et al.  Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs , 2014 .

[16]  Max H. Farrell,et al.  Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs , 2018, The Econometrics Journal.

[17]  Max H. Farrell,et al.  On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference , 2015, Journal of the American Statistical Association.

[18]  Thomas Lemieux,et al.  Weak Identification in Fuzzy Regression Discontinuity Designs , 2016 .

[19]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[20]  Jack Porter,et al.  Estimation in the Regression Discontinuity Model , 2003 .

[21]  Matias D. Cattaneo,et al.  A Practical Introduction to Regression Discontinuity Designs , 2019, 1911.09511.

[22]  Timothy B. Armstrong,et al.  Optimal Inference in a Class of Regression Models , 2015, 1511.06028.

[23]  D. Campbell,et al.  Regression-Discontinuity Analysis: An Alternative to the Ex-Post Facto Experiment , 1960 .

[24]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[25]  Runze Li,et al.  Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression , 2010 .

[26]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .