Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely

In the present paper we compute numerical invariants of programs by abstract interpretation. For that we consider the abstract domain of quadratic zones recently introduced byAdje et al. [2]. We use a relaxed abstract semantics which is at least as precise as the relaxed abstract semantics of Adje et al. [2]. For computing our relaxed abstract semantics, we present a practical strategy improvement algorithm for precisely computing least solutions of fixpoint equation systems, whose right-hand sides use order-concave operators and the maximum operator. These fixpoint equation systems strictly generalize the fixpoint equation systems considered by Gawlitza and Seidl [11].

[1]  Henrik Björklund,et al.  Complexity of Model Checking by Iterative Improvement: The Pseudo-Boolean Framework , 2003, Ershov Memorial Conference.

[2]  Kousha Etessami,et al.  PReMo : An Analyzer for P robabilistic Re cursive Mo dels , 2007, TACAS.

[3]  Antoine Mid The Octagon Abstract Domain , 2001 .

[4]  Helmut Seidl,et al.  Solving systems of rational equations through strategy iteration , 2011, TOPL.

[5]  Harald Ganzinger,et al.  Programs as Data Objects , 1986, Lecture Notes in Computer Science.

[6]  Ankur Taly,et al.  Static Analysis by Policy Iteration on Relational Domains , 2007, ESOP.

[7]  Antoine Miné,et al.  A New Numerical Abstract Domain Based on Difference-Bound Matrices , 2001, PADO.

[8]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.

[9]  Henny B. Sipma,et al.  Scalable Analysis of Linear Systems Using Mathematical Programming , 2005, VMCAI.

[10]  Antoine Miné,et al.  The octagon abstract domain , 2001, High. Order Symb. Comput..

[11]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[12]  Brian Campbell,et al.  Amortised Memory Analysis Using the Depth of Data Structures , 2009, ESOP.

[13]  Eric Goubault,et al.  A Policy Iteration Algorithm for Computing Fixed Points in Static Analysis of Programs , 2005, CAV.

[14]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[15]  Manfred Broy,et al.  Perspectives of System Informatics , 2001, Lecture Notes in Computer Science.

[16]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[17]  Kousha Etessami,et al.  Recursive Concurrent Stochastic Games , 2008, Log. Methods Comput. Sci..

[18]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[19]  Helmut Seidl,et al.  Precise Relational Invariants Through Strategy Iteration , 2007, CSL.

[20]  Kousha Etessami,et al.  Recursive Stochastic Games with Positive Rewards , 2008, ICALP.

[21]  Henrik Björklund,et al.  Optimization on Completely Unimodal Hypercubes , 2002 .

[22]  Helmut Seidl,et al.  Approximative Methods for Monotone Systems of Min-Max-Polynomial Equations , 2008, ICALP.

[23]  Helmut Seidl,et al.  Precise Fixpoint Computation Through Strategy Iteration , 2007, ESOP.

[24]  Eric Goubault,et al.  Coupling Policy Iteration with Semi-definite Relaxation to Compute Accurate Numerical Invariants in Static Analysis , 2010, ESOP.

[25]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.