On the condition number of high order finite element methods: Influence of p-refinement and mesh distortion
暂无分享,去创建一个
Elena Atroshchenko | S. Eisenträger | R. Makvandi | S. Eisenträger | E. Atroshchenko | R. Makvandi | Sascha Eisenträger | Sascha Eisenträger
[1] F. de Prenter,et al. Condition number analysis and preconditioning of the finite cell method , 2016, 1601.05129.
[2] Jan S. Kirschke,et al. Robust and parallel scalable iterative solutions for large-scale finite cell analyses , 2018, Finite Elements in Analysis and Design.
[3] I. Doležel,et al. Higher-Order Finite Element Methods , 2003 .
[4] Sascha Duczek,et al. Higher order finite elements and the fictitious domain concept for wave propagation analysis , 2014 .
[5] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[6] L. Trefethen,et al. Numerical linear algebra , 1997 .
[7] K. Bathe. Finite Element Procedures , 1995 .
[8] Ernst Rank,et al. The p-Version of the Finite Element and Finite Cell Methods , 2017 .
[9] Thomas J. R. Hughes,et al. NURBS as a Pre‐Analysis Tool: Geometric Design and Mesh Generation , 2009 .
[10] J. Maître,et al. Condition number and diagonal preconditioning: comparison of the $p$-version and the spectral element methods , 1996 .
[11] Isaac Fried. Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number , 1972 .
[12] I. Babuska,et al. Finite Element Analysis , 2021 .
[13] Nicholas J. Higham,et al. Detecting the causes of ill-conditioning in structural finite element models , 2014 .
[14] Timon Rabczuk,et al. Isogeometric analysis with strong multipatch C1-coupling , 2018, Comput. Aided Geom. Des..
[15] Hauke Gravenkamp,et al. Critical assessment of different mass lumping schemes for higher order serendipity finite elements , 2019, Computer Methods in Applied Mechanics and Engineering.
[16] K. Bathe,et al. Effects of element distortions on the performance of isoparametric elements , 1993 .
[17] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[18] Jörg Liesen,et al. Convergence analysis of Krylov subspace methods , 2004 .
[19] Ivo Babuška,et al. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .
[20] C. Douglas,et al. Condition number estimates for matrices arising in NURBS based isogeometric discretizations of elliptic partial differential equations , 2014, 1406.6808.
[21] Hauke Gravenkamp,et al. Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods , 2019, Computer Methods in Applied Mechanics and Engineering.
[22] Elena Atroshchenko,et al. Weakening the tight coupling between geometry and simulation in isogeometric analysis: From sub‐ and super‐geometric analysis to Geometry‐Independent Field approximaTion (GIFT) , 2016, 1706.06371.
[23] Ivo Babuška,et al. The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron , 1995 .
[24] A. Patera. A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .
[25] Jens Markus Melenk,et al. On condition numbers in hp -FEM with Gauss-Lobatto-based shape functions , 2002 .
[26] Ning Hu,et al. Bounds for eigenvalues and condition numbers in the p-version of the finite element method , 1998, Math. Comput..
[27] Elwood T. Olsen,et al. Bounds on spectral condition numbers of matrices arising in the $p$-version of the finite element method , 1995 .
[28] L. Demkowicz. One and two dimensional elliptic and Maxwell problems , 2006 .
[29] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[30] Ivo Babuška,et al. The Problem of Selecting the Shape Functions for a p-Type Finite Element , 1989 .
[31] G. Karniadakis,et al. Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .
[32] Mark Ainsworth,et al. Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and NonStandard Reduced Integration , 2010, SIAM J. Numer. Anal..
[33] C. Pozrikidis,et al. Introduction to finite and spectral element methods using MATLAB , 2014 .