Explicit Congestion Control Algorithms for Time Varying Capacity Media

Explicit congestion control (XCC) is emerging as one potential solution for overcoming limitations inherent to the current TCP algorithm, characterized by unstable throughput, high queuing delay, RTT-limited fairness, and a static dynamic range that does not scale well to high bandwidth delay product networks. In XCC, routers provide multibit feedback to sources, which, in turn, adapt throughput more accurately to the path bandwidth with potentially faster convergence times. Such systems, however, require precise knowledge of link capacity for efficient operation. In the presence of variable-capacity media, e.g., 802.11, such information is not entirely obvious or may be difficult to extract. We explore three possible algorithms for XCC which retain efficiency under such conditions by inferring available bandwidth from queue dynamics and test them through simulations with two relevant XCC protocols: XCP and RCP. Additionally, preliminary results from an experimental implementation based on XCP are presented. Finally, we compare our proposals with TCP and show how such algorithms outperform it in terms of efficiency, stability, queuing delay, and flow-rate fairness.

[1]  Sally Floyd,et al.  Determining an appropriate sending rate over an underutilized network path , 2007, Comput. Networks.

[2]  Rui Zhang-Shen Typical versus Worst Case Design in Networking , 2005 .

[3]  Mark Handley,et al.  Congestion control for high bandwidth-delay product networks , 2002, SIGCOMM '02.

[4]  Robert Shorten,et al.  Experimental Evaluation of TCP Protocols for High-Speed Networks , 2007, IEEE/ACM Transactions on Networking.

[5]  Larry Peterson,et al.  TCP Vegas: new techniques for congestion detection and avoidance , 1994, SIGCOMM 1994.

[6]  W. Richard Stevens,et al.  TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms , 1997, RFC.

[7]  Sally Floyd,et al.  Quick-Start for TCP and IP , 2007, RFC.

[8]  Donald F. Towsley,et al.  Modeling TCP throughput: a simple model and its empirical validation , 1998, SIGCOMM '98.

[9]  P. Wang,et al.  Simple Analysis of XCP Equilibrium Performance , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[10]  Dina Katabi,et al.  Decoupling congestion control and bandwidth allocation policy with application to high bandwidth-delay product networks , 2002 .

[11]  Manish Jain,et al.  Pathload: A Measurement Tool for End-to-End Available Bandwidth , 2002 .

[12]  Robert Tappan Morris,et al.  Capacity of Ad Hoc wireless networks , 2001, MobiCom '01.

[13]  John Nagle,et al.  Congestion control in IP/TCP internetworks , 1984, CCRV.

[14]  R. Srikant,et al.  An adaptive virtual queue (AVQ) algorithm for active queue management , 2004, IEEE/ACM Transactions on Networking.

[15]  Thomas Voice,et al.  Stability of end-to-end algorithms for joint routing and rate control , 2005, CCRV.

[16]  Rayadurgam Srikant,et al.  The Mathematics of Internet Congestion Control (Systems and Control: Foundations and Applications) , 2004 .

[17]  Charles E. Perkins,et al.  Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for mobile computers , 1994, SIGCOMM.

[18]  Srinivasan Keshav,et al.  An Engineering Approach to Computer Networking: ATM Networks , 1996 .

[19]  Bob Briscoe,et al.  Flow rate fairness: dismantling a religion , 2007, CCRV.

[20]  Mark Handley,et al.  Equation-based congestion control for unicast applications , 2000, SIGCOMM 2000.

[21]  Yang Su,et al.  WXCP: Explicit Congestion Control for Wireless Multi-hop Networks , 2005, IWQoS.

[22]  Van Jacobson,et al.  Random early detection gateways for congestion avoidance , 1993, TNET.

[23]  Y. Zhang,et al.  An implementation and experimental study of the explicit control protocol (XCP) , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[24]  KellyFrank,et al.  Stability of end-to-end algorithms for joint routing and rate control , 2005 .

[25]  Raj Jain,et al.  The OSU Scheme for Congestion Avoidance in ATM Networks: Lessons Learnt and Extensions , 1997, Perform. Evaluation.

[26]  Jon Postel,et al.  Internet Protocol , 1981, RFC.

[27]  Nick McKeown,et al.  Stability Analysis of Explicit Congestion Control Protocols , 2007, IEEE Communications Letters.

[28]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[29]  Scott Shenker,et al.  Core-stateless fair queueing: a scalable architecture to approximate fair bandwidth allocations in high-speed networks , 2003, TNET.

[30]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[31]  Nick McKeown,et al.  Processor Sharing Flows in the Internet , 2005, IWQoS.

[32]  Andrei V. Gurtov,et al.  Effect of vertical handovers on performance of TCP-friendly rate control , 2004, MOCO.

[33]  Mark Allman,et al.  New techniques for making transport protocols robust to corruption-based loss , 2004, CCRV.

[34]  Richard Hughes-Jones,et al.  Evaluation of Advanced TCP Stacks on Fast Long-Distance Production Networks , 2003, Journal of Grid Computing.

[35]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[36]  Saverio Mascolo,et al.  The effect of reverse traffic on the performance of new TCP congestion control algorithms , 2022 .

[37]  Sally Floyd,et al.  TCP Selective Acknowledgement Options , 1996 .

[38]  Manuel Ricardo,et al.  XCP for shared-access multi-rate media , 2006, CCRV.

[39]  Cheng Jin,et al.  FAST TCP: Motivation, Architecture, Algorithms, Performance , 2006, IEEE/ACM Transactions on Networking.

[40]  Lachlan L. H. Andrew,et al.  Common TCP Evaluation Suite , 2009 .

[41]  Christophe Diot,et al.  Reasons not to deploy RED , 1999, 1999 Seventh International Workshop on Quality of Service. IWQoS'99. (Cat. No.98EX354).

[42]  Ren Wang,et al.  TCP westwood: Bandwidth estimation for enhanced transport over wireless links , 2001, MobiCom '01.

[43]  Injong Rhee,et al.  Delay-based congestion avoidance for TCP , 2003, TNET.

[44]  Tobias Harks,et al.  Utility Max-Min Fair Congestion Control with Time-Varying Delays , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[45]  Aaron Falk,et al.  Specification for the Explicit Control Protocol (XCP) , 2007 .

[46]  Van Jacobson,et al.  The synchronization of periodic routing messages , 1994, TNET.

[47]  D. M. Lopez-Pacheco XCP-i : eXplicit Control Protocol for heterogeneous inter-networking of high-speed networks , 2008 .

[48]  Charles E. Perkins,et al.  Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers , 1994, SIGCOMM.

[49]  A. Charny,et al.  An Algorithm for Rate Allocation in a Packet-Switching Network With Feedback , 1994 .

[50]  Injong Rhee,et al.  Binary increase congestion control (BIC) for fast long-distance networks , 2004, IEEE INFOCOM 2004.

[51]  Sally Floyd,et al.  Metrics for the Evaluation of Congestion Control Mechanisms , 2008, RFC.

[52]  Theodore Faber,et al.  Achieving Faster Access to Satellite Link Bandwidth , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[53]  Shugong Xu,et al.  Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks? , 2001, IEEE Commun. Mag..

[54]  Van Jacobson,et al.  Congestion avoidance and control , 1988, SIGCOMM '88.

[55]  Shugong Xu,et al.  Does the ieee 802 , 2001 .

[56]  João Taveira Araújo,et al.  Flash Crowd Effect in RCP , 2008 .

[57]  Lachlan L. H. Andrew,et al.  Understanding XCP: Equilibrium and Fairness , 2005, IEEE/ACM Transactions on Networking.

[58]  Bogdan M. Wilamowski,et al.  The Transmission Control Protocol , 2005, The Industrial Information Technology Handbook.

[59]  Moshe Zukerman,et al.  MaxNet: a new network congestion control architecture for max-min fairness , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[60]  Nick McKeown,et al.  Why flow-completion time is the right metric for congestion control , 2006, CCRV.

[61]  Arnaud Jacquet,et al.  Policing congestion response in an internetwork using re-feedback , 2005, SIGCOMM '05.

[62]  Stefan Savage,et al.  TCP congestion control with a misbehaving receiver , 1999, CCRV.

[63]  Raj Jain,et al.  The art of computer systems performance analysis - techniques for experimental design, measurement, simulation, and modeling , 1991, Wiley professional computing.

[64]  Fernando Paganini,et al.  Congestion control for high performance, stability, and fairness in general networks , 2005, IEEE/ACM Transactions on Networking.

[65]  Jörg Widmer,et al.  TCP Friendly Rate Control (TFRC): Protocol Specification , 2003, RFC.

[66]  Richard G. Baraniuk,et al.  pathChirp: Efficient available bandwidth estimation for network paths , 2003 .

[67]  Raj Jain,et al.  The ERICA switch algorithm for ABR traffic management in ATM networks , 1998, TNET.

[68]  Stephen E. Deering,et al.  Internet Protocol, Version 6 (IPv6) Specification , 1995, RFC.

[69]  Vern Paxson,et al.  TCP Congestion Control , 1999, RFC.

[70]  Injong Rhee,et al.  Limitations of Equation-Based Congestion Control , 2005, IEEE/ACM Transactions on Networking.

[71]  Injong Rhee,et al.  CUBIC: a new TCP-friendly high-speed TCP variant , 2008, OPSR.

[72]  Donald F. Towsley,et al.  Capacity of a wireless ad hoc network with infrastructure , 2007, MobiHoc '07.

[73]  Yongguang Zhang,et al.  A Control Theoretic Analysis of XCP , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[74]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[75]  Yishay Mansour,et al.  Phantom: a simple and effective flow control scheme , 1996, SIGCOMM '96.