Autologer kultivierter Hautersatz

ZusammenfassungFortschritte in der Kultivierung von Hautzellen und in der Biomaterialtechnologie haben zu kommerziellen autologen und allogenen Hautersatzprodukten geführt, welche Keratinozyten und/oder Fibroblasten z.T. kombiniert mit allogenen (Fibrin) oder xenogenen (Kollagen, Hyaluronan) Matrixsubstanzen einsetzen. Bei der klinischen Erprobung dieser Tissue-Engineering-Produkte standen bisher chronische Wunden (vaskuläre Ulcera cruris, diabetische Fussulzera) im Vordergrund. Eine weitere wesentliche Indikation stellen großflächige akute Hautdefekte (Verbrennungen) dar. Im letzten Jahrzehnt sind mit einigen kultivierten Hautersatzprodukten z. T. kontrollierte klinische Studien vor allem an vaskulären Ulcera cruris durchgeführt worden, einzelne wurden von Regulationsbehörden verschiedener Länder für definierte Indikationen zugelassen. Um die regulatorischen Auflagen zu erfüllen und eine Übernahme durch die Kostenträger zu erreichen, sollte für diese neuartigen Therapieansätze neben der Sicherheit die Kosten-Nutzen-Relation in klar umschriebenen Indikationen im Vergleich zu einer anerkannten Therapiemodalität belegt werden. Diese Anforderung und die Ressourcenknappheit im Gesundheitswesen erschweren zurzeit trotz ungebrochener Forschungsaktivität einen Durchbruch des Tissue Engineering in der Behandlung von Hautwunden.AbstractProgress in cell culture and biomaterial technologies has resulted in commercially available autologous and allogeneic skin substitutes that are composed of keratinocytes and/or fibroblats, in part combined with allogeneic (fibrin) or xenogeneic (collagen, hyaluronan) matrix substances. So far, clinical testing of tissue-engineered products focused on chronic wounds (vascular leg ulcers, diabetic foot ulcers); another major indication, however, is large acute skin defects (burns). During the last decade, partly-controlled clinical trials have been performed with several cultured skin substitutes, studying primarily vascular leg ulcers; a few of these products have been approved for defined indications by the regulatory authorities of various countries. To fulfill regulatory requirements and be eligible for reimbursement, safety as well as cost-effectiveness have to be documented for these novel therapies in contrast to established methods for clearly defined clinical settings; this, in combination with restricted health care resources, is actually hampering the clinical breakthrough of tissue engineering in the treatment of skin wounds, despite undiminished research activities.

[1]  P. Fratino,et al.  HYAFF 11-based autologous dermal and epidermal grafts in the treatment of noninfected diabetic plantar and dorsal foot ulcers: a prospective, multicenter, controlled, randomized clinical trial. , 2003, Diabetes care.

[2]  C. Soranzo,et al.  Extensive traumatic soft tissue loss: reconstruction in severely injured patients using cultured hyaluronan-based three-dimensional dermal and epidermal autografts. , 2001, The Journal of trauma.

[3]  D. Vacher Production de feuillets épidermiques autologues pour la thérapie cellulaire cutanée , 2003 .

[4]  T. Sun,et al.  Hair follicle stem cells. , 2003, The journal of investigative dermatology. Symposium proceedings.

[5]  Nicola J Brown,et al.  Development of a reconstructed human skin model for angiogenesis , 2003, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[6]  I. Yannas Synthesis of organs: in vitro or in vivo? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Y. Barrandon,et al.  LONG-TERM REGENERATION OF HUMAN EPIDERMIS ON THIRD DEGREE BURNS TRANSPLANTED WITH AUTOLOGOUS CULTURED EPITHELIUM GROWN ON A FIBRIN MATRIX1,2 , 2000, Transplantation.

[8]  S. Boyce,et al.  Design principles for composition and performance of cultured skin substitutes. , 2001, Burns : journal of the International Society for Burn Injuries.

[9]  H. Green,et al.  Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma , 1975, Cell.

[10]  J. Naeyaert,et al.  Autologous Cellular Suspensions and Sheets in the Treatment of Achromic Disorders: The Need for Future Controlled Studies , 2001, Dermatology.

[11]  H Green,et al.  Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. , 1975, Cell.

[12]  A. Limat,et al.  Cultured keratinocyte grafts. , 1999, Current problems in dermatology.

[13]  S. Feinberg,et al.  Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary report. , 2003, International journal of oral and maxillofacial surgery.

[14]  H. Green,et al.  Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is , 1975, Cell.

[15]  Michael J Lysaght,et al.  Tissue engineering: the end of the beginning. , 2004, Tissue engineering.

[16]  N. Scuderi,et al.  Transplantation of Autologous Cultivated Conjunctival Epithelium for the Restoration of Defects in the Ocular Surface , 2002, Scandinavian journal of plastic and reconstructive surgery and hand surgery.

[17]  D. Salomon,et al.  An autologous epidermal equivalent tissue‐engineered from follicular outer root sheath keratinocytes is as effective as split‐thickness skin autograft in recalcitrant vascular leg ulcers , 2003, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[18]  C. Compton,et al.  Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. , 1989, Laboratory investigation; a journal of technical methods and pathology.

[19]  D. Mauri,et al.  Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells. , 1996, The Journal of investigative dermatology.