Numerical study of blow-up to the purely elliptic generalized Davey-Stewartson system
暂无分享,去创建一个
[1] S. Erbay,et al. Two-dimensional wave packets in an elastic solid with couple stresses , 2004 .
[2] Christophe Besse,et al. Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson , 1998 .
[3] Brynjulf Owren,et al. Plane wave stability of some conservative schemes for the cubic Schr , 2009 .
[4] Gulcin M. Muslu,et al. Closing the gap in the purely elliptic generalized Davey-Stewartson system , 2008 .
[5] K. Stewartson,et al. On three-dimensional packets of surface waves , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[6] Gulcin M. Muslu,et al. Numerical simulation of blow-up solutions for the generalized Davey–Stewartson system , 2011, Int. J. Comput. Math..
[7] Papanicolaou,et al. Focusing singularity of the cubic Schrödinger equation. , 1986, Physical review. A, General physics.
[8] Handan Borluk,et al. A numerical study of the long wave-short wave interaction equations , 2007, Math. Comput. Simul..
[9] Christophe Besse,et al. A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..
[10] A. Eden,et al. Global existence and nonexistence results for a generalized Davey–Stewartson system , 2004 .
[11] Weiqing Ren,et al. An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .
[12] R. Russell,et al. New Self-Similar Solutions of the Nonlinear Schrödinger Equation with Moving Mesh Computations , 1999 .
[13] N. Gavish,et al. New singular solutions of the nonlinear Schrödinger equation , 2005 .