Conditional CD8+ T Cell Escape during Acute Simian Immunodeficiency Virus Infection

ABSTRACT CD8+ T cell responses rapidly select viral variants during acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection. We used pyrosequencing to examine variation within three SIV-derived epitopes (Gag386-394GW9, Nef103-111RM9, and Rev59-68SP10) targeted by immunodominant CD8+ T cell responses in acutely infected Mauritian cynomolgus macaques. In animals recognizing all three epitopes, variation within Rev59-68SP10 was associated with delayed accumulation of variants in Gag386-394GW9 but had no effect on variation within Nef103-111RM9. This demonstrates that the entire T cell repertoire, rather than a single T cell population, influences the timing of immune escape, thereby providing the first example of conditional CD8+ T cell escape in HIV/SIV infection.

[1]  Austin Hughes,et al.  Ultradeep Pyrosequencing Detects Complex Patterns of CD8+ T-Lymphocyte Escape in Simian Immunodeficiency Virus-Infected Macaques , 2009, Journal of Virology.

[2]  Daniel J. Blankenberg,et al.  Galaxy: A Web‐Based Genome Analysis Tool for Experimentalists , 2010, Current protocols in molecular biology.

[3]  J. Schmitz,et al.  Monkeys Immunodeficiency Virus-infected Rhesus Lymphocyte Responses in Simian T + Dominant Epitope-specific Cd8 Immunodomination in the Evolution Of , 2022 .

[4]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[5]  David Heckerman,et al.  Marked Epitope- and Allele-Specific Differences in Rates of Mutation in Human Immunodeficiency Type 1 (HIV-1) Gag, Pol, and Nef Cytotoxic T-Lymphocyte Epitopes in Acute/Early HIV-1 Infection , 2008, Journal of Virology.

[6]  O. Yang Will we be able to 'spot' an effective HIV-1 vaccine? , 2003, Trends in immunology.

[7]  Bette Korber,et al.  Epitope-Specific CD8+ T Lymphocytes Cross-Recognize Mutant Simian Immunodeficiency Virus (SIV) Sequences but Fail To Contain Very Early Evolution and Eventual Fixation of Epitope Escape Mutations during SIV Infection , 2011, Journal of Virology.

[8]  E. Rosenberg,et al.  Relative Dominance of Epitope-Specific Cytotoxic T-Lymphocyte Responses in Human Immunodeficiency Virus Type 1-Infected Persons with Shared HLA Alleles , 2001, Journal of Virology.

[9]  Todd M. Allen,et al.  Viral evolution and escape during acute HIV-1 infection. , 2010, The Journal of infectious diseases.

[10]  Melisa L. Budde,et al.  Transcriptionally Abundant Major Histocompatibility Complex Class I Alleles Are Fundamental to Nonhuman Primate Simian Immunodeficiency Virus-Specific CD8+ T Cell Responses , 2011, Journal of Virology.

[11]  A. Hughes,et al.  Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques , 2007, Immunogenetics.

[12]  Melisa L. Budde,et al.  Characterization of Mauritian cynomolgus macaque major histocompatibility complex class I haplotypes by high-resolution pyrosequencing , 2010, Immunogenetics.

[13]  Philip J. R. Goulder,et al.  Impact of MHC class I diversity on immune control of immunodeficiency virus replication , 2008, Nature Reviews Immunology.

[14]  Austin L. Hughes,et al.  Whole-Genome Characterization of Human and Simian Immunodeficiency Virus Intrahost Diversity by Ultradeep Pyrosequencing , 2010, Journal of Virology.

[15]  Jennifer J. Lhost,et al.  Mauritian Cynomolgus Macaques Share Two Exceptionally Common Major Histocompatibility Complex Class I Alleles That Restrict Simian Immunodeficiency Virus-Specific CD8+ T Cells , 2009, Journal of Virology.

[16]  M. Feinberg,et al.  Viral CTL Escape Mutants Are Generated in Lymph Nodes and Subsequently Become Fixed in Plasma and Rectal Mucosa during Acute SIV Infection of Macaques , 2011, PLoS pathogens.

[17]  W. Deppert,et al.  Relationship among immunodominance of single CD8+ T cell epitopes, virus load, and kinetics of primary antiviral CTL response. , 1998, Journal of immunology.

[18]  D. Watkins,et al.  Recognition of Escape Variants in ELISPOT Does Not Always Predict CD8+ T-Cell Recognition of Simian Immunodeficiency Virus-Infected Cells Expressing the Same Variant Sequences , 2007, Journal of Virology.

[19]  R. Koup,et al.  Putative Immunodominant Human Immunodeficiency Virus-Specific CD8+ T-Cell Responses Cannot Be Predicted by Major Histocompatibility Complex Class I Haplotype , 2000, Journal of Virology.

[20]  O. Yang CTL ontogeny and viral escape: implications for HIV-1 vaccine design. , 2004, Trends in immunology.

[21]  D. Nixon,et al.  T cell immunity in acute HIV-1 infection. , 2010, The Journal of infectious diseases.

[22]  M. Altfeld,et al.  Immunodominance of HIV-1-specific CD8(+) T-cell responses in acute HIV-1 infection: at the crossroads of viral and host genetics. , 2005, Trends in immunology.

[23]  Melisa L. Budde,et al.  Extralymphoid CD8+ T Cells Resident in Tissue from Simian Immunodeficiency Virus SIVmac239Δnef-Vaccinated Macaques Suppress SIVmac239 Replication Ex Vivo , 2010, Journal of Virology.

[24]  Michael Gleicher,et al.  Visualizing virus population variability from next generation sequencing data , 2011, 2011 IEEE Symposium on Biological Data Visualization (BioVis)..

[25]  Austin L. Hughes,et al.  Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection , 2002, Nature Medicine.

[26]  D. Watkins,et al.  Patterns of CD8+ Immunodominance May Influence the Ability of Mamu-B*08-Positive Macaques To Naturally Control Simian Immunodeficiency Virus SIVmac239 Replication , 2007, Journal of Virology.

[27]  Anton Nekrutenko,et al.  Manipulation of FASTQ data with Galaxy , 2010, Bioinform..

[28]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[29]  Philip J. R. Goulder,et al.  HIV and SIV CTL escape: implications for vaccine design , 2004, Nature Reviews Immunology.