Multiresolution Approximate Inverse Preconditioners

We introduce a new preconditioner for elliptic PDEs on unstructured meshes. Using a wavelet-inspired basis we compress the inverse of the matrix, allowing an effective sparse approximate inverse by solving the sparsity vs. accuracy conflict. The key issue in this compression is to use second generation wavelets which can be adapted to the unstructured mesh, the true boundary conditions, and even the PDE coefficients. We also show how this gives a new perspective on multiresolution algorithms such as multigrid, interpreting the new preconditioner as a variation on node-nested multigrid. In particular, we hope the new preconditioner will combine the best of both worlds: fast convergence when multilevel methods can succeed but with robust performance for more difficult problems. The rest of the paper discusses the core issues for the preconditioner: ordering and construction of a factored approximate inverse in the multiresolution basis, robust interpolation on unstructured meshes, automatic mesh coarsening, and purely algebraic alternatives. Some exploratory numerical experiments suggest the superiority of the new basis over the standard basis for several tough problems, including discontinuous anisotropic coefficients, strong convection, and indefinite reaction problems on unstructured meshes, with scalability like hierarchical basis methods achieved.

[1]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[2]  Michele Benzi,et al.  Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..

[3]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets II: Implementation and Numerical Results , 1998, SIAM J. Sci. Comput..

[4]  Albert Cohen,et al.  Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..

[5]  A. A. Nikishin,et al.  Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners , 2000 .

[6]  Tony F. Chan,et al.  Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes , 1994 .

[7]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[8]  Wei-Pai Tang,et al.  Sparse Approximate Inverse Smoother for Multigrid , 2000, SIAM J. Matrix Anal. Appl..

[9]  T. Chan,et al.  Wavelet sparse approximate inverse preconditioners , 1997 .

[10]  E. F. F. Botta,et al.  Matrix Renumbering ILU: An Effective Algebraic Multilevel ILU Preconditioner for Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[11]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[12]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[13]  Panayot S. Vassilevski,et al.  Element-Free AMGe: General Algorithms for Computing Interpolation Weights in AMG , 2001, SIAM J. Sci. Comput..

[14]  Yousef Saad,et al.  ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..

[15]  Jun Zhang,et al.  BILUM: Block Versions of Multielimination and Multilevel ILU Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[16]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[17]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[18]  Robert Bridson,et al.  A Structural Diagnosis of Some IC Orderings , 2000, SIAM J. Sci. Comput..

[19]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[20]  Christian Wagner,et al.  Multilevel ILU decomposition , 1999, Numerische Mathematik.

[21]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[22]  Claudio Canuto,et al.  The wavelet element method. Part II: Realization and additional features in 2D and 3D , 1997 .

[23]  Wolfgang Dahmen,et al.  Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..

[24]  Randolph E. Bank,et al.  The Incomplete Factorization Multigraph Algorithm , 1999, SIAM J. Sci. Comput..

[25]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[26]  Randolph E. Bank,et al.  Analysis Of A Two-Level Scheme For Solving Finite Element Equations , 1980 .

[27]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[28]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[29]  Michele Benzi,et al.  Orderings for Factorized Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[30]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[31]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[32]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .

[33]  R. Bridson,et al.  Multi-Resolution Approximate Inverses , 1999 .

[34]  Wei-Pai Tang,et al.  Spectral ordering techniques for incomplete LU preconditoners for CG methods , 1995 .

[35]  Robert Bridson,et al.  Ordering, Anisotropy, and Factored Sparse Approximate Inverses , 1999, SIAM J. Sci. Comput..

[36]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[37]  Wei-Pai Tang,et al.  Refining an approximate inverse , 2000 .

[38]  F. CHAN,et al.  WAVELET SPARSE APPROXIMATE INVERSE PRECONDITIONERSTONY , 1997 .

[39]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[40]  W. Dahmen Wavelet methods for PDEs — some recent developments , 2001 .

[41]  J. Gilbert Predicting Structure in Sparse Matrix Computations , 1994 .

[42]  Edmond Chow,et al.  Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..