A physical perspective of the element‐based finite volume method and FEM‐Galerkin methods within the framework of the space of finite elements

SUMMARY The literature shows an increasing number of works focused on investigating the behaviour of methods that uses concepts of control volumes in the solution of structural problems. In recent years, new approaches using unstructured meshes have been proposed, most of which addressing new applications and, to a lesser extent, the underling physical perspective. This paper presents a unified approach to the element-based finite volume method and FEM-Galerkin within the framework of the finite element space. Numerical examples highlight some accuracy issues associated with the element-based finite volume method developed in this work. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  Andreas Lahrmann,et al.  An element formulation for the classical finite difference and finite volume method applied to arbitrarily shaped domains , 1992 .

[2]  Alojz Ivankovic,et al.  Finite volume analysis of dynamic fracture phenomena – II. A cohesive zone type methodology , 2002 .

[3]  Takuya Tsuchiya,et al.  Finite difference, finite element and finite volume methods applied to two-point boundary value problems , 2002 .

[4]  Pingjian Ming,et al.  An unstructured finite volume time domain method for structural dynamics , 2012 .

[5]  J. Fainberg,et al.  Finite volume multigrid solver for thermo-elastic stress analysis in anisotropic materials , 1996 .

[6]  Saeed-Reza Sabbagh-Yazdi,et al.  GFV solution on UTE mesh for transient modeling of concrete aging effects on thermal plane strains during construction of gravity dam , 2013 .

[7]  Koulis Pericleous,et al.  Dynamic fluid–structure interaction using finite volume unstructured mesh procedures , 2002 .

[8]  Marcus Wheel,et al.  A control volume‐based finite element method for plane micropolar elasticity , 2008 .

[9]  J. G. Williams,et al.  Application of the finite volume method to the analysis of dynamic fracture problems , 1994 .

[10]  Yong Zhao,et al.  A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid-structure interaction , 2007, J. Comput. Phys..

[11]  C. Bailey,et al.  Dynamic solid mechanics using finite volume methods , 2003 .

[12]  Alojz Ivankovic,et al.  Finite‐volume stress analysis in multi‐material linear elastic body , 2013 .

[13]  Marcus Wheel,et al.  A finite volume method for solid mechanics incorporating rotational degrees of freedom , 2003 .

[14]  Chris Bailey,et al.  A control volume procedure for solving the elastic stress-strain equations on an unstructured mesh , 1991 .

[15]  Wenke Pan,et al.  A finite‐volume method for solids with a rotational degrees of freedom based on the 6‐node triangle , 2010 .

[16]  Gareth A. Taylor,et al.  Solution of the elastic/visco-plastic constitutive equations: A finite volume approach , 1995 .

[17]  C. Bailey,et al.  A vertex‐based finite volume method applied to non‐linear material problems in computational solid mechanics , 2003 .

[18]  G. Strang Piecewise polynomials and the finite element method , 1973 .

[19]  Miguel Cervera,et al.  A finite volume format for structural mechanics , 1994 .

[20]  Pablo A. Muñoz-Rojas,et al.  On the accuracy of nodal stress computation in plane elasticity using finite volumes and finite elements , 2009 .

[21]  Hrvoje Jasak,et al.  Application of the finite volume method and unstructured meshes to linear elasticity , 2000 .

[22]  M. A. Wheel A finite-volume approach to the stress analysis of pressurized axisymmetric structures , 1996 .

[23]  I. Bijelonja,et al.  A finite volume method for large strain analysis of incompressible hyperelastic materials , 2005 .

[24]  Wenke Pan,et al.  Six-node triangle finite volume method for solids with a rotational degree of freedom for incompressible material , 2008 .

[25]  Khosrow Zarrabi,et al.  A finite volume element formulation for solution of elastic axisymmetric pressurized components , 2000 .

[26]  I. Demirdžić,et al.  Finite volume analysis of stress and deformation in hygro-thermo-elastic orthotropic body , 2000 .

[27]  Gareth A. Taylor,et al.  Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis , 2000 .

[28]  T. N. Croft,et al.  Computational modelling of metal extrusion and forging processes , 2002 .

[29]  Marcus Wheel,et al.  A mixed finite volume formulation for determining the small strain deformation of incompressible materials , 1999 .

[30]  Chris Bailey,et al.  A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh , 1995 .

[31]  E. Oñate,et al.  Finite volumes and finite elements: Two ‘good friends’ , 1994 .

[32]  Yong Zhao,et al.  A 3D implicit unstructured-grid finite volume method for structural dynamics , 2007 .

[33]  M. Wheel,et al.  A finite volume method for analysing the bending deformation of thick and thin plates , 1997 .

[34]  Alojz Ivankovic,et al.  Finite volume analysis of dynamic fracture phenomena – I. A node release methodology , 2002 .