Nonconforming finite element method for a generalized nonlinear Schrödinger equation

Abstract In this paper, an efficient nonconforming finite element method (FEM) is studied with E Q 1 r o t element for a generalized nonlinear Schrodinger equation. First, we prove a novel result of the consistency error estimate with order O(h2) for E Q 1 r o t element which leads to the superconvergent error estimate in broken H1-norm for semi-discrete scheme, while previous work only derive convergent results for this element. Second, a linearized backward Euler scheme is established and a time-discrete system is introduced to split the error into two parts, the temporal error and the spatial error. By using a rigorous analysis for the regularity of the time-discrete system and the proved characters of E Q 1 r o t element, the optimal L2-error estimate is obtained without any time-step restrictions, which leads to the numerical solution can be bounded in L∞-norm by an inverse inequality unconditionally. Then, the supercloseness estimate is arrived at with the above achievements. Third, global superconvergence results are deduced through interpolated postprocessing technique. At last, numerical examples are provided to confirm the theoretical analysis. Here, h is the subdivision parameter, and τ is the time step.

[1]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[2]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[3]  Sergey Leble,et al.  On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..

[4]  Zhangxin Chen,et al.  Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation , 2018, J. Comput. Appl. Math..

[5]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[6]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[7]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[8]  Huiqun Zhang,et al.  Extended Jacobi elliptic function expansion method and its applications , 2007 .

[9]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[10]  Schürmann Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Wang Ming-Liang,et al.  The (G′/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrödinger equation , 2009 .

[12]  A. Biswas,et al.  Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach , 2015 .

[13]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method II: Vibrational energy levels of triatomic molecules , 1983 .

[14]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[15]  Houchao Zhang,et al.  Superconvergence analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation , 2018 .

[16]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[17]  Zhi-Zhong Sun,et al.  Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..

[18]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[19]  Ameneh Taleei,et al.  A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..

[20]  D. Pathria,et al.  Exact solutions for a generalized nonlinear Schrödinger equation , 1989 .

[21]  Dongyang Shi,et al.  A nonconforming quadrilateral finite element approximation to nonlinear schrödinger equation , 2017 .

[22]  Y. Tourigny,et al.  Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .

[23]  Shao-chunChen,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .

[24]  Abdelhalim Ebaid,et al.  New types of exact solutions for nonlinear Schrödinger equation with cubic nonlinearity , 2011, J. Comput. Appl. Math..

[25]  Zhangxin Chen,et al.  Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation , 2016, Adv. Comput. Math..

[26]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[27]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.

[28]  Xin Liao,et al.  Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation , 2016, Appl. Math. Comput..

[29]  A. G. Bratsos A modified numerical scheme for the cubic Schrödinger equation , 2011 .

[30]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[31]  Pelinovsky,et al.  Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .