Nonconforming finite element method for a generalized nonlinear Schrödinger equation
暂无分享,去创建一个
[1] Georgios Akrivis,et al. Finite difference discretization of the cubic Schrödinger equation , 1993 .
[2] Dongyang Shi,et al. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.
[3] Sergey Leble,et al. On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..
[4] Zhangxin Chen,et al. Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation , 2018, J. Comput. Appl. Math..
[5] Dongyang Shi,et al. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..
[6] Q. Lin,et al. Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .
[7] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[8] Huiqun Zhang,et al. Extended Jacobi elliptic function expansion method and its applications , 2007 .
[9] G. Akrivis,et al. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .
[10] Schürmann. Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[11] Wang Ming-Liang,et al. The (G′/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrödinger equation , 2009 .
[12] A. Biswas,et al. Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach , 2015 .
[13] M. Feit,et al. Solution of the Schrödinger equation by a spectral method II: Vibrational energy levels of triatomic molecules , 1983 .
[14] J. M. Sanz-Serna,et al. Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .
[15] Houchao Zhang,et al. Superconvergence analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation , 2018 .
[16] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[17] Zhi-Zhong Sun,et al. Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..
[18] Buyang Li,et al. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.
[19] Ameneh Taleei,et al. A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..
[20] D. Pathria,et al. Exact solutions for a generalized nonlinear Schrödinger equation , 1989 .
[21] Dongyang Shi,et al. A nonconforming quadrilateral finite element approximation to nonlinear schrödinger equation , 2017 .
[22] Y. Tourigny,et al. Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .
[23] Shao-chunChen,et al. AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .
[24] Abdelhalim Ebaid,et al. New types of exact solutions for nonlinear Schrödinger equation with cubic nonlinearity , 2011, J. Comput. Appl. Math..
[25] Zhangxin Chen,et al. Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation , 2016, Adv. Comput. Math..
[26] Chi-Wang Shu,et al. Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .
[27] Dongyang Shi,et al. Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.
[28] Xin Liao,et al. Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation , 2016, Appl. Math. Comput..
[29] A. G. Bratsos. A modified numerical scheme for the cubic Schrödinger equation , 2011 .
[30] Charalambos Makridakis,et al. A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..
[31] Pelinovsky,et al. Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[32] Qianshun Chang,et al. Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .