Facial Structure Analysis Separates Autism Spectrum Disorders into Meaningful Clinical Subgroups

Varied cluster analysis were applied to facial surface measurements from 62 prepubertal boys with essential autism to determine whether facial morphology constitutes viable biomarker for delineation of discrete Autism Spectrum Disorders (ASD) subgroups. Earlier study indicated utility of facial morphology for autism subgrouping (Aldridge et al. in Mol Autism 2(1):15, 2011). Geodesic distances between standardized facial landmarks were measured from three-dimensional stereo-photogrammetric images. Subjects were evaluated for autism-related symptoms, neurologic, cognitive, familial, and phenotypic variants. The most compact cluster is clinically characterized by severe ASD, significant cognitive impairment and language regression. This verifies utility of facially-based ASD subtypes and validates Aldridge et al.’s severe ASD subgroup, notwithstanding different techniques. It suggests that language regression may define a unique ASD subgroup with potential etiologic differences.

[1]  M. Carter Diagnostic and Statistical Manual of Mental Disorders, 5th ed. , 2014 .

[2]  S. Dudoit,et al.  A prediction-based resampling method for estimating the number of clusters in a dataset , 2002, Genome Biology.

[3]  C. Lord,et al.  Autism Diagnostic Observation Schedule , 2016 .

[4]  G. Stefanatos Regression in Autistic Spectrum Disorders , 2008, Neuropsychology Review.

[5]  Liuqing Peng,et al.  CVAP: Validation for Cluster Analyses , 2009, Data Sci. J..

[6]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[7]  Ying He,et al.  A global algorithm to compute defect-tolerant geodesic distance , 2012, SIGGRAPH Asia Technical Briefs.

[8]  森脇愛子,et al.  1歳からの広汎性発達障害の出現とその発達的変化:地域ベースの横断的および縦断的研究 一般児童における発達障害の有病率と関連要因に関する研究 2)対人応答性尺度(Social Responsiveness Scale:SRS)の標準化 , 2011 .

[9]  Robert Tibshirani,et al.  Cluster Validation by Prediction Strength , 2005 .

[10]  B. Leventhal,et al.  The Autism Diagnostic Observation Schedule—Generic: A Standard Measure of Social and Communication Deficits Associated with the Spectrum of Autism , 2000, Journal of autism and developmental disorders.

[11]  Csaba Legány,et al.  Cluster validity measurement techniques , 2006 .

[12]  Francisco Azuaje,et al.  Cluster validation techniques for genome expression data , 2003, Signal Process..

[13]  L. Eaves,et al.  Subtypes of autism by cluster analysis , 1994, Journal of autism and developmental disorders.

[14]  Belén Melián-Batista,et al.  Solving feature subset selection problem by a Parallel Scatter Search , 2006, Eur. J. Oper. Res..

[15]  Ye Duan,et al.  Facial phenotypes in subgroups of prepubertal boys with autism spectrum disorders are correlated with clinical phenotypes , 2011, Molecular autism.

[16]  Jonathan M. Campbell,et al.  Clinical Characteristics Associated with Language Regression for Children with Autism Spectrum Disorders , 2010, Journal of autism and developmental disorders.

[17]  Shi-Qing Xin,et al.  An intrinsic algorithm for computing geodesic distance fields on triangle meshes with holes , 2012, Graph. Model..

[18]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[19]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[20]  J H Miles,et al.  Head circumference is an independent clinical finding associated with autism. , 2000, American journal of medical genetics.

[21]  Judith H. Miles,et al.  Autism Subgroups from a Medical Genetics Perspective , 2011 .

[22]  A. Ben Hamza,et al.  Geodesic matching of triangulated surfaces , 2006, IEEE Transactions on Image Processing.

[23]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[24]  A. Couteur,et al.  Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders , 1994, Journal of autism and developmental disorders.

[25]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[26]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[27]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[28]  Lei Xu,et al.  Best first strategy for feature selection , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[29]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[30]  M. Spence,et al.  Development and validation of a measure of dysmorphology: Useful for autism subgroup classification , 2008, American journal of medical genetics. Part A.

[31]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[32]  Zachary Warren,et al.  A multisite study of the clinical diagnosis of different autism spectrum disorders. , 2012, Archives of general psychiatry.

[33]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[34]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[35]  L. Farkas,et al.  Growth and Development of Regional Units in the Head and Face Based on Anthropometric Measurements , 1992 .

[36]  J. Miles,et al.  Autism Families with a High Incidence of Alcoholism , 2003, Journal of autism and developmental disorders.

[37]  John Bielinski,et al.  Vineland Adaptive Behavior Scales, Second Edition , 2008 .

[38]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[39]  Eibe Frank,et al.  Large-scale attribute selection using wrappers , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[40]  Olatz Arbelaitz,et al.  An extensive comparative study of cluster validity indices , 2013, Pattern Recognit..

[41]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[42]  L. Farkas Anthropometry of the head and face , 1994 .

[43]  J. Piven,et al.  Autism and the broad autism phenotype: familial patterns and intergenerational transmission , 2013, Journal of Neurodevelopmental Disorders.

[44]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[45]  R. Reeve,et al.  Brief Report: Impact of Child Problem Behaviors and Parental Broad Autism Phenotype Traits on Substance Use Among Parents of Children with ASD , 2014, Journal of autism and developmental disorders.

[46]  Janet B W Williams,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[47]  Dc Washington Diagnostic and Statistical Manual of Mental Disorders, 4th Ed. , 1994 .

[48]  Ajmal S. Mian,et al.  Biologically Significant Facial Landmarks: How Significant Are They for Gender Classification? , 2013, 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[49]  J. Ewing,et al.  Detecting alcoholism. The CAGE questionnaire. , 1984, JAMA.

[50]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[51]  L. Farkas,et al.  Growth and development of regional units in the head and face based on anthropometric measurements. , 1992, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[52]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[53]  G. Baird,et al.  Regression, Developmental Trajectory and Associated Problems in Disorders in the Autism Spectrum: The SNAP Study , 2008, Journal of autism and developmental disorders.