Diffusion in Model Networks as Studied by NMR and Fluorescence Correlation Spectroscopy

We have studied the diffusion of small solvent molecules (octane) and larger hydrophobic dye probes in octane-swollen poly(dimethyl siloxane) linear-chain solutions and end-linked model networks, using pulsed-gradient nuclear magnetic resonance (NMR) and fluorescence correlation spectroscopy (FCS), respectively, focusing on diffusion in the bulk polymer up to the equilibrium degree of swelling of the networks, that is, 4.8 at most. The combination of these results allows for new conclusions on the feasibility of different theories describing probe diffusion in concentrated polymer systems. While octane diffusion shows no cross-link dependence, the larger dyes are increasingly restricted by fixed chemical meshes. The simple Fujita free-volume theory proved most feasible to describe probe diffusion in linear long-chain solutions with realistic parameters, while better fits were obtained assuming a stretched exponential dependence on concentration. Importantly, we have analyzed the cross-link specific effect on probe diffusion independently of any specific model by comparing the best-fit interpolation of the solution data with the diffusion in the networks. The most reasonable description is obtained by assuming that the cross-link effect is additive in the effective friction coefficient of the probes. The concentration dependences as well as the data compared at the equilibrium degrees of swelling indicate that swelling heterogeneities and diffusant shape have a substantial influence on small-molecule diffusion in networks.

[1]  S. Granick,et al.  Polymer lateral diffusion at the solid-liquid interface. , 2004, Journal of the American Chemical Society.

[2]  J. Hofkens,et al.  Single-molecule conformations probe free volume in polymers. , 2004, Journal of the American Chemical Society.

[3]  Hikichi,et al.  Probe diffusion in gels. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  R K Jain,et al.  Hindered diffusion in agarose gels: test of effective medium model. , 1996, Biophysical journal.

[5]  Michael Börsch,et al.  Engineering the structural properties of DNA block copolymer micelles by molecular recognition. , 2007, Angewandte Chemie.

[6]  G. Phillies The hydrodynamic scaling model for polymer self-diffusion , 1989 .

[7]  M. Eigen,et al.  Sorting single molecules: application to diagnostics and evolutionary biotechnology. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Self-Diffusion Anisotropy of Small Penetrants in Compressed Elastomers , 2003 .

[9]  F. Horkay,et al.  Probe diffusion in aqueous poly(vinyl alcohol) solutions studied by fluorescence correlation spectroscopy. , 2007, Biomacromolecules.

[10]  J. L. Duda,et al.  Diffusion in polymer-solvent systems. II. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight , 1977 .

[11]  S. Matsukawa,et al.  A Study of Self-Diffusion of Molecules in Polymer Gel by Pulsed-Gradient Spin−Echo 1H NMR , 1996 .

[12]  Richard A. Keller,et al.  Single molecule detection in solution : methods and applications , 2002 .

[13]  C. Seidel,et al.  Conformational changes of the H+‐ATPase from Escherichia coli upon nucleotide binding detected by single molecule fluorescence , 1998, FEBS letters.

[14]  S. Seiffert,et al.  Diffusion of linear macromolecules and spherical particles in semidilute polymer solutions and polymer networks , 2008 .

[15]  J. E. Tanner Use of the Stimulated Echo in NMR Diffusion Studies , 1970 .

[16]  K. Wilkinson,et al.  Combining small angle neutron scattering (SANS) and fluorescence correlation spectroscopy (FCS) measurements to relate diffusion in agarose gels to structure. , 2006, The journal of physical chemistry. B.

[17]  K. Müllen,et al.  Synthesis and modification of terrylenediimides as high-performance fluorescent dyes. , 2005, Chemistry.

[18]  F. Horkay,et al.  Structural Changes in Polymer Gels Probed by Fluorescence Correlation Spectroscopy , 2004 .

[19]  W. Webb,et al.  Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy , 1972 .

[20]  Watt W Webb,et al.  Biological and chemical applications of fluorescence correlation spectroscopy: a review. , 2002, Biochemistry.

[21]  N. Peppas,et al.  Solute diffusion in swollen membranes. Part V: Solute diffusion in poly(2‐hydroxyethyl methacrylate) , 1986 .

[22]  A. Müller,et al.  Characterization of Micelles of Polyisobutylene-block-poly(methacrylic acid) in Aqueous Medium , 2000 .

[23]  W. Wen,et al.  A nuclear magnetic resonance study of dynamics in toluene‐polyisobutylene solutions: 1. Penetrant diffusion and Fujita theory , 1995 .

[24]  D. S. Pearson,et al.  Viscosity and self-diffusion coefficient of hydrogenated polybutadiene , 1994 .

[25]  Hiroshi Uji-i,et al.  Polymers and Single Molecule Fluorescence Spectroscopy, what Can We Learn? , 2009 .

[26]  J. Sommer,et al.  Swelling Heterogeneities in End-Linked Model Networks: A Combined Proton Multiple-Quantum NMR and Computer Simulation Study , 2004 .

[27]  H. Schmalz,et al.  Fluorescence Correlation Spectroscopy of Single Dye-Labeled Polymers in Organic Solvents , 2004 .

[28]  J. Enderlein,et al.  Direct observation of single molecule mobility in semidilute polymer solutions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  P. Štěpánek,et al.  Aggregation behavior of amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy , 2004 .

[30]  Michael Börsch,et al.  Enzymatic control of the size of DNA block copolymer nanoparticles. , 2008, Angewandte Chemie.

[31]  K. Peneva,et al.  Diffusion in polymer solutions studied by fluorescence correlation spectroscopy. , 2009, The journal of physical chemistry. B.

[32]  S. Candau,et al.  Some comments on the swelling of polymeric networks in relation to their structure , 1981 .

[33]  R. Jordan,et al.  Role of the tracer in characterizing the aggregation behavior of aqueous block copolymer solutions using fluorescence correlation spectroscopy , 2007 .

[34]  H. Butt,et al.  Diffusion and conformation of peptide-functionalized polyphenylene dendrimers studied by fluorescence correlation and 13C NMR spectroscopy. , 2007, Biomacromolecules.

[35]  P. Štěpánek,et al.  Aggregation behavior of amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy , 2004 .

[36]  W. Oppermann,et al.  A Fluorescence Correlation Spectroscopy Study on the Self-Diffusion of Polystyrene Chains in Dilute and Semidilute Solution , 2005 .

[37]  J. Rädler,et al.  Dynamics of large semiflexible chains probed by fluorescence correlation spectroscopy. , 2003, Physical review letters.

[38]  Kenneth A. Smith,et al.  Permeability of solutes through hydrated polymer membranes. Part III. Theoretical background for the selectivity of dialysis membranes , 1969 .

[39]  N. Peppas,et al.  Solute diffusion in swollen membranes. Part II. Influence of crosslinking on diffusive properties , 1984 .

[40]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[41]  F. Horkay,et al.  Structure and dynamics of a poly(dimethylsiloxane) network: a comparative investigation of gel and solution , 1992 .

[42]  N. Peppas,et al.  Solute diffusion in swollen membranes. Part I. A new theory , 1983 .

[43]  Jörg Enderlein,et al.  Art and artefacts of fluorescence correlation spectroscopy. , 2004, Current pharmaceutical biotechnology.

[44]  X. Zhu,et al.  Self-diffusion studies of water and poly(ethylene glycol) in solutions and gels of selected hydrophilic polymers , 1999 .

[45]  N. Peppas,et al.  Solute diffusion in swollen membranes. IV. Theories for moderately swollen networks , 1985 .

[46]  J. L. Duda,et al.  Diffusion in polymer—solvent systems. I. Reexamination of the free‐volume theory , 1977 .

[47]  E. V. Meerwall,et al.  Diffusion of hydrocarbons in rubber, measured by the pulsed gradient NMR method , 1979 .

[48]  Rainer Erdmann,et al.  Time-resolved confocal scanning device for ultrasensitive fluorescence detection , 2001 .

[49]  L. Johansson,et al.  Diffusion and interaction in gels and solutions. 2. Experimental results on the obstruction effect , 1991 .

[50]  S. Sukhishvili,et al.  Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions. , 2005, The Journal of chemical physics.

[51]  Boué,et al.  Experimental evidence for inhomogeneous swelling and deformation in statistical gels. , 1991, Physical review letters.

[52]  W. Webb,et al.  Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. , 2002, Biophysical journal.

[53]  D. Horn,et al.  Study of the Interactions between Poly(vinyl pyrrolidone) and Sodium Dodecyl Sulfate by Fluorescence Correlation Spectroscopy. , 1999, Angewandte Chemie.

[54]  David Turnbull,et al.  Molecular Transport in Liquids and Glasses , 1959 .

[55]  B. Amsden,et al.  Solute Diffusion within Hydrogels. Mechanisms and Models , 1998 .

[56]  Jacques Buffle,et al.  Size effects on diffusion processes within agarose gels. , 2004, Biophysical journal.

[57]  L. Johansson,et al.  Diffusion and interaction in gels and solutions: I. Method , 1991 .

[58]  L. Leibler,et al.  Large-scale heterogeneities in randomly cross-linked networks , 1988 .

[59]  C. Tanford Macromolecules , 1994, Nature.

[60]  R. Winkler,et al.  Intramolecular dynamics of linear macromolecules by fluorescence correlation spectroscopy. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  B. Roux,et al.  A New Physical Model for the Diffusion of Solvents and Solute Probes in Polymer Solutions , 1996 .

[62]  X. Zhu,et al.  Physical models of diffusion for polymer solutions, gels and solids , 1999 .

[63]  J. Rička,et al.  Improved fluorescence correlation apparatus for precise measurements of correlation functions , 1988 .

[64]  B. Haidar,et al.  1H multiple-quantum nuclear magnetic resonance investigations of molecular order distributions in poly(dimethylsiloxane) networks: Evidence for a linear mixing law in bimodal systems , 2003 .

[65]  J. Hofkens,et al.  Polymers and single molecule fluorescence spectroscopy, what can we learn? , 2009, Chemical Society reviews.

[66]  T. Hashimoto,et al.  Direct Observation of Internal Structures in Poly(N-isopropylacrylamide) Chemical Gels , 1999 .

[67]  B. Amsden,et al.  An Obstruction-Scaling Model for Diffusion in Homogeneous Hydrogels , 1999 .

[68]  G. Fytas,et al.  Segmental dynamics of bulk polymers studied by fluorescence correlation spectroscopy , 2005 .

[69]  Elliot L. Elson,et al.  Fluorescence correlation spectroscopy : theory and applications , 2001 .

[70]  H. Fujita Diffusion in polymer-diluent systems , 1961 .

[71]  T. Lin,et al.  Phenomenological scaling laws for ‘‘semidilute’’ macromolecule solutions from light scattering by optical probe particles , 1985 .

[72]  R. Rigler,et al.  Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion , 1993, European Biophysics Journal.

[73]  Tommy Nilsson,et al.  Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. , 2003, Biophysical journal.