Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays
暂无分享,去创建一个
Craig A. Grimes | Karthik Shankar | Oomman K. Varghese | Gopal K. Mor | Maggie Paulose | C. Grimes | O. Varghese | G. Mor | M. Paulose | K. Shankar
[1] Vladimir M. Aroutiounian,et al. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting , 2005 .
[2] Craig A. Grimes,et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .
[3] Craig A Grimes,et al. Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.
[4] Craig A. Grimes,et al. Photoelectrochemical properties of titania nanotubes , 2004 .
[5] C. Grimes,et al. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.
[6] Michael Grätzel,et al. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells , 2004 .
[7] K. Sandhage,et al. Nanocarving of Bulk Titania Crystals into Oriented Arrays of Single‐Crystal Nanofibers via Reaction with Hydrogen‐Bearing Gas , 2004 .
[8] Craig A. Grimes,et al. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .
[9] G. Cao,et al. A study on the growth of TiO2 nanorods using sol electrophoresis , 2004 .
[10] Craig A. Grimes,et al. Fabrication of tapered, conical-shaped titania nanotubes , 2003 .
[11] M. Grätzel. Dye-sensitized solar cells , 2003 .
[12] Ashutosh Kumar Singh,et al. Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process , 2003 .
[13] A. J. Frank,et al. Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .
[14] S. Yoshikawa,et al. Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells , 2003 .
[15] Kurt D. Benkstein,et al. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .
[16] K. Hirao,et al. Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method , 2003 .
[17] Craig A. Grimes,et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .
[18] W. Ingler,et al. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.
[19] O. Cámara,et al. Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates , 2002 .
[20] A. Gedanken,et al. Sonochemical synthesis of titania whiskers andnanotubes , 2001 .
[21] Craig A. Grimes,et al. Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .
[22] Xinyi Zhang,et al. Electrochemical Fabrication of Single-Crystalline Anatase TiO2 Nanowire Arrays , 2001 .
[23] P. Gouma,et al. ANATASE-TO-RUTILE TRANSFORMATION IN TITANIA POWDERS , 2001 .
[24] P. Liska,et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.
[25] M. Grätzel. Photoelectrochemical cells : Materials for clean energy , 2001 .
[26] D. Vanmaekelbergh,et al. Recombination of Photogenerated Charge Carriers in Nanoporous Gallium Phosphide , 2000 .
[27] D. Vanmaekelbergh,et al. DRIVING FORCE FOR ELECTRON TRANSPORT IN POROUS NANOSTRUCTURED PHOTOELECTRODES , 1999 .
[28] K. Yoon,et al. EFFECT OF PT LAYERS ON THE PHOTOELECTROCHEMICAL PROPERTIES OF A WO3/P-SI ELECTRODE , 1998 .
[29] Muthupandian Ashokkumar,et al. An overview on semiconductor particulate systems for photoproduction of hydrogen , 1998 .
[30] C. R. Howarth,et al. Applied studies on immobilized titanium dioxide films ascatalysts for the photoelectrochemical detoxification of water , 1997 .
[31] Fei Cao,et al. ELECTRON TRANSPORT IN POROUS NANOCRYSTALLINE TIO2 PHOTOELECTROCHEMICAL CELLS , 1996 .
[32] D. Vanmaekelbergh,et al. Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles. , 1996, Physical review letters.
[33] J. Lagemaat,et al. Enhancement of the light‐to‐current conversion efficiency in an n‐SiC/solution diode by porous etching , 1996 .
[34] James R. Bolton,et al. Solar photoproduction of hydrogen: A review , 1996 .
[35] Anders Hagfeldt,et al. Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .
[36] Allen J. Bard,et al. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .
[37] W. Smyrl,et al. Photoelectrochemical investigations of thin metal-oxide films : TiO2, Al2O3, and HfO2 on the parent metals , 1993 .
[38] Y. Pleskov,et al. Photosplitting of water in a photoelectrolyser with solid polymer electrolyte , 1993 .
[39] A. Burggraaf,et al. Textural evolution and phase transformation in titania membranes: Part 1.—Unsupported membranes , 1993 .
[40] M. Kozlowski,et al. Photoelectrochemical Measurements of Thin Oxide Films: Multiple Internal Reflection Effects , 1992 .
[41] A. Fujishima,et al. Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.