Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays

[1]  Vladimir M. Aroutiounian,et al.  Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting , 2005 .

[2]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[3]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[4]  Craig A. Grimes,et al.  Photoelectrochemical properties of titania nanotubes , 2004 .

[5]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[6]  Michael Grätzel,et al.  Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells , 2004 .

[7]  K. Sandhage,et al.  Nanocarving of Bulk Titania Crystals into Oriented Arrays of Single‐Crystal Nanofibers via Reaction with Hydrogen‐Bearing Gas , 2004 .

[8]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[9]  G. Cao,et al.  A study on the growth of TiO2 nanorods using sol electrophoresis , 2004 .

[10]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[11]  M. Grätzel Dye-sensitized solar cells , 2003 .

[12]  Ashutosh Kumar Singh,et al.  Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process , 2003 .

[13]  A. J. Frank,et al.  Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .

[14]  S. Yoshikawa,et al.  Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells , 2003 .

[15]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[16]  K. Hirao,et al.  Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method , 2003 .

[17]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[18]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[19]  O. Cámara,et al.  Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates , 2002 .

[20]  A. Gedanken,et al.  Sonochemical synthesis of titania whiskers andnanotubes , 2001 .

[21]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[22]  Xinyi Zhang,et al.  Electrochemical Fabrication of Single-Crystalline Anatase TiO2 Nanowire Arrays , 2001 .

[23]  P. Gouma,et al.  ANATASE-TO-RUTILE TRANSFORMATION IN TITANIA POWDERS , 2001 .

[24]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[25]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[26]  D. Vanmaekelbergh,et al.  Recombination of Photogenerated Charge Carriers in Nanoporous Gallium Phosphide , 2000 .

[27]  D. Vanmaekelbergh,et al.  DRIVING FORCE FOR ELECTRON TRANSPORT IN POROUS NANOSTRUCTURED PHOTOELECTRODES , 1999 .

[28]  K. Yoon,et al.  EFFECT OF PT LAYERS ON THE PHOTOELECTROCHEMICAL PROPERTIES OF A WO3/P-SI ELECTRODE , 1998 .

[29]  Muthupandian Ashokkumar,et al.  An overview on semiconductor particulate systems for photoproduction of hydrogen , 1998 .

[30]  C. R. Howarth,et al.  Applied studies on immobilized titanium dioxide films ascatalysts for the photoelectrochemical detoxification of water , 1997 .

[31]  Fei Cao,et al.  ELECTRON TRANSPORT IN POROUS NANOCRYSTALLINE TIO2 PHOTOELECTROCHEMICAL CELLS , 1996 .

[32]  D. Vanmaekelbergh,et al.  Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles. , 1996, Physical review letters.

[33]  J. Lagemaat,et al.  Enhancement of the light‐to‐current conversion efficiency in an n‐SiC/solution diode by porous etching , 1996 .

[34]  James R. Bolton,et al.  Solar photoproduction of hydrogen: A review , 1996 .

[35]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[36]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[37]  W. Smyrl,et al.  Photoelectrochemical investigations of thin metal-oxide films : TiO2, Al2O3, and HfO2 on the parent metals , 1993 .

[38]  Y. Pleskov,et al.  Photosplitting of water in a photoelectrolyser with solid polymer electrolyte , 1993 .

[39]  A. Burggraaf,et al.  Textural evolution and phase transformation in titania membranes: Part 1.—Unsupported membranes , 1993 .

[40]  M. Kozlowski,et al.  Photoelectrochemical Measurements of Thin Oxide Films: Multiple Internal Reflection Effects , 1992 .

[41]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.