Some properties of LR-splines

Recently a new approach to piecewise polynomial spaces generated by B-spline has been presented by T. Dokken, T. Lyche and H.F. Pettersen, namely Locally Refined splines. In their recent work (Dokken et al., 2013) they define the LR B-spline collection and provide tools to compute the space dimension. Here different properties of the LR-splines are analyzed: in particular the coefficients for polynomial representations and their relation with other properties such as linear independence and the number of B-splines covering each element.

[1]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[2]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[3]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[4]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[7]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[8]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .

[9]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[10]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[11]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[12]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[13]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[14]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[15]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[16]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[17]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[18]  G. T. Finnigan Arbitrary Degree T-Splines , 2008 .

[19]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[20]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[21]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[22]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[23]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .