Some properties of LR-splines
暂无分享,去创建一个
[1] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[2] Giancarlo Sangalli,et al. Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.
[3] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[4] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .
[5] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[6] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[7] Thomas J. R. Hughes,et al. Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..
[8] L. Schumaker,et al. Local Spline Approximation Methods , 1975 .
[9] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[10] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[11] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[12] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[13] Xin Li,et al. Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.
[14] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[15] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[16] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[17] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[18] G. T. Finnigan. Arbitrary Degree T-Splines , 2008 .
[19] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[20] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[21] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[22] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[23] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .