First results from GeMS/GSAOI for project SUNBIRD: Supernovae UNmasked by Infra-Red Detection

We would like to thank the anonymous referee for constructive comments. This publication is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States); the National Research Council (Canada); CONICYT (Chile); Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina); and Ministerio da Ciencia, Tecnologia e Inovacao (Brazil). The relevant program codes are: GS-2012B-SV-407 (PI: S. Ryder); GS-2013A-Q-9 (PI: S. Ryder/F. Bauer); GS-2015A-C-2, (PI: S. Sweet/R. Sharp); GS-2015A-Q-6 (PI: S. Ryder); GS-2015A-Q-7 (PI: S. Ryder); GN-2015A- DD-4 (PI: S. Ryder) and GS-2016A-C-1 (PI: E. Kool). This publication is based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID's 073.D-0406 (PI: P. Vaisanen), 086.B-0901 (PI: A. Escala) and 089.D-0847 (PI: S. Mattila) and on data obtained from the ESO Science Archive Facility under request numbers eckool194907, -196798 and -226876. The European VLBI Network is a joint facility of independent European, African, Asian and North American radio astronomy institutes. Scientific results from data presented in this publication are derived from the following EVN project code(s): RSP13 (P.I. Perez-Torres). RMcD is the recipient of an Australian Research Council Future Fellowship (project number FT150100333). ECK is grateful for financial support provided by the International Macquarie University Research Excellence Scholarship and the Australian Astronomical Observatory (AAO) through the AAO PhD Scholarship Scheme. MAPT, RHI and AA acknowledge support by the Spanish MINECO through grants AYA2012-38491-C02-02 and AYA2015-63939-C2-1-P, co-funded with FEDER funds. FEB acknowledges support from CONICYT-Chile Basal-CATA PFB-06/2007 and FONDECYT Regular 1141218. CRC acknowledges support from CONICYT through FONDECYT grant 3150238. FEB and CRC acknowledge support from the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS.

[1]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[2]  A. Alberdi,et al.  Evidence of nuclear disks in starburst galaxies from their radial distribution of supernovae , 2012, 1203.2927.

[3]  J. Eldridge,et al.  Core-Collapse Supernova Rate Synthesis Within 11 Mpc , 2015, 1506.07908.

[4]  E. Deul,et al.  GaBoDS: The Garching-Bonn Deep Survey; IV. Methods for the Image reduction of multi-chip Cameras , 2005 .

[5]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[6]  F. Mannucci,et al.  Discovery of two infrared supernovae: a new window on the SN search , 2002, astro-ph/0204107.

[7]  Princeton,et al.  The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey , 2005, astro-ph/0506022.

[8]  A. Efstathiou,et al.  DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883 , 2011, 1112.0777.

[9]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[10]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[11]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[12]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[13]  M. Turatto,et al.  The radial distribution of core-collapse supernovae in spiral host galaxies , 2009, 0910.1801.

[14]  R. Chornock,et al.  The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.

[15]  A. Efstathiou,et al.  CORE-COLLAPSE SUPERNOVAE MISSED BY OPTICAL SURVEYS , 2012, 1206.1314.

[16]  J. Conway,et al.  Core-collapse and Type Ia supernovae with the SKA , 2014, 1409.1827.

[17]  E. al.,et al.  Optical and infrared photometry of the Type IIn SN 1998S: days 11–146 , 2000, astro-ph/0006080.

[18]  Michael P. Rupen,et al.  A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THERMONUCLEAR SUPERNOVAE WITH THE VERY LARGE ARRAY , 2015, 1510.07662.

[19]  A. Pastorello,et al.  HAWK-I infrared supernova search in starburst galaxies , 2013, 1303.3803.

[20]  A. Efstathiou,et al.  Adaptive Optics Discovery of Supernova 2004ip in the Nuclear Regions of the Luminous Infrared Galaxy IRAS 18293–3413 , 2007, astro-ph/0702591.

[21]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[22]  F. Mannucci,et al.  A NICMOS search for obscured supernovae in starburst galaxies , 2007 .

[23]  M. Phillips,et al.  SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163 , 2016, 1609.04444.

[24]  M. Turatto,et al.  The Asiago Supernova Catalogue - 10 years after , 1999 .

[25]  R. Margutti,et al.  An Open Catalog for Supernova Data , 2016, 1605.01054.

[26]  Jing-yao Hu,et al.  The supernova 1998S in NGC 3877: another supernova with Wolf-Rayet star features in pre-maximum spectrum , 2000 .

[27]  Bryan M. Gaensler,et al.  VISIBILITY STACKING IN THE QUEST FOR TYPE Ia SUPERNOVA RADIO EMISSION , 2011, 1105.6188.

[28]  Isaac Newton Group of Telescopes,et al.  Highly extinguished supernovae in the nuclear regions of starburst galaxies , 2004 .

[29]  Sarah J. Diggs,et al.  Gemini multiconjugate adaptive optics system review – II. Commissioning, operation and overall performance , 2014, 1402.6906.

[30]  R. Kotak,et al.  The Type IIb SN 2011dh: Two years of observations and modelling of the lightcurves , 2014, 1408.0731.

[31]  Xiaofeng Wang,et al.  OPTICAL OBSERVATIONS OF THE TYPE IA SUPERNOVA SN 2011fe IN M101 FOR NEARLY 500 DAYS , 2016, 1602.02951.

[32]  Andreas Kelz,et al.  Ground-based instrumentation for astronomy , 2004 .

[33]  L. Strolger,et al.  The Extended HST Supernova Survey: The Rate of SNe Ia at z > 1.4 Remains Low , 2008, 0803.1130.

[34]  Jessica R. Lu,et al.  Astrometric performance of the Gemini multiconjugate adaptive optics system in crowded fields , 2014, 1409.0719.

[35]  N. M. Nagar,et al.  The infrared supernova rate in starburst galaxies , 2003, astro-ph/0302323.

[36]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[37]  Charles P. Cavedoni,et al.  Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration , 2013, 1310.6199.

[38]  J. Sollerman,et al.  The Rate of Supernovae at Redshift 0.1 − 1.0 : the Stockholm VIMOS Supernova Survey IV , 2012, 1206.6897.

[39]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.

[40]  A. Efstathiou,et al.  Discovery of a Very Highly Extinguished Supernova in a Luminous Infrared Galaxy , 2008, 0810.2885.

[41]  L. Kewley,et al.  Modeling IR spectral energy distributions: a pilot study of starburst parameters and silicate absorption curves for some GOALS galaxies , 2010, 1012.2174.

[42]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[43]  F. Deubner,et al.  Ground — based instrumentation , 1994 .

[44]  Anne-Marie Lagrange,et al.  NAOS-CONICA first on sky results in a variety of observing modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[45]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[46]  S. D. Ryder,et al.  The nature of supernovae 2010O and 2010P in Arp 299 – II. Radio emission , 2014, 1403.1036.

[47]  Erkki Kankare,et al.  NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE–STAR FORMATION RATE RELATION , 2013, 1308.6293.

[48]  W. Vacca,et al.  Space Telescope Imaging Spectrograph Ultraviolet/Optical Spectroscopy of “Warm” Ultraluminous Infrared Galaxies , 2004, astro-ph/0412168.

[49]  Physics,et al.  SN 2009jf: a slow-evolving stripped-envelope core-collapse supernova , 2011, 1106.3030.

[50]  G. A. Croes,et al.  FITS++: An Object-Oriented Set of C++ Classes to Support FITS , 1997 .

[51]  M. Radovich,et al.  Supernova rates from the SUDARE VST-Omegacam search. I , 2015, 1509.04496.

[52]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[53]  E. Kankare,et al.  Star formation and AGN activity in a sample of local luminous infrared galaxies through multiwavelength characterization , 2017, 1705.09663.

[54]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[55]  C. Kochanek,et al.  OBSERVING THE NEXT GALACTIC SUPERNOVA , 2013, 1306.0559.

[56]  Ryan Chornock,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.

[57]  An Infrared Search for Extinguished Supernovae in Starburst Galaxies , 1998, astro-ph/9812253.

[58]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[59]  A. B. Danilet,et al.  The ASAS-SN bright supernova catalogue – I. 2013–2014 , 2016, 1604.00396.

[60]  Lourdes Verdes-Montenegro,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[61]  D. Bersier,et al.  The ASAS-SN Bright Supernova Catalog – II. 2015 , 2016, 1704.02320.

[62]  W. M. Wood-Vasey,et al.  THE INFRARED LIGHT CURVE OF SN 2011fe IN M101 AND THE DISTANCE TO M101 , 2012, 1205.3828.

[63]  Adam G. Riess,et al.  THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS , 2015, 1509.06574.

[64]  A. Pastorello,et al.  The nature of supernovae 2010O and 2010P in Arp 299 - I. Near-infrared and optical evolution , 2013, 1311.6408.

[65]  W. P. S. Meikle,et al.  Erratum: Supernovae in the nuclear regions of starburst galaxies , 2001 .

[66]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[67]  M. Schirmer,et al.  THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND MID-INFRARED IMAGING DATA , 2013, 1308.4989.

[68]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[69]  A. Evans,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF LOCAL LUMINOUS AND ULTRALUMINOUS INFRARED GALAXIES , 2012, 1209.1611.

[70]  N. Morrell,et al.  DO THE PHOTOMETRIC COLORS OF TYPE II-P SUPERNOVAE ALLOW ACCURATE DETERMINATION OF HOST GALAXY EXTINCTION? , 2008, 0809.2591.

[71]  J. Prieto,et al.  THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE , 2011, 1102.1977.

[72]  Adam G. Riess,et al.  THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z ∼ 1 , 2012, 1208.0342.

[73]  J. C. Lee,et al.  A comparison between star formation rate diagnostics and rate of core collapse supernovae within 11 Mpc , 2011, 1111.1692.

[74]  P. Astier,et al.  The SkyMapper Transient Survey , 2017, Publications of the Astronomical Society of Australia.

[75]  Claudia Winge,et al.  GEMINI FRONTIER FIELDS: WIDE-FIELD ADAPTIVE OPTICS Ks-BAND IMAGING OF THE GALAXY CLUSTERS MACS J0416.1-2403 AND ABELL 2744 , 2014, 1409.1820.

[76]  R. Kotak,et al.  Optical and near-infrared observations of SN 2011dh – The first 100 days , 2013, 1305.1851.