fiction: An Open Source Framework for the Design of Field-coupled Nanocomputing Circuits

As a class of emerging post-CMOS technologies, Field-coupled Nanocomputing (FCN) devices promise computation with tremendously low energy dissipation. Even though ground breaking advances in several physical implementations like Quantum-dot Cellular Automata (QCA) or Nanomagnet Logic (NML) have been made in the last couple of years, design automation for FCN is still in its infancy and often still relies on manual labor. In this paper, we present an open source framework called fiction for physical design and technology mapping of FCN circuits. Its efficient data structures, state-of-the-art algorithms, and extensibility provide a basis for future research in the community.

[1]  Robert Wille,et al.  Evaluating the Impact of Interconnections in Quantum-Dot Cellular Automata , 2018, 2018 21st Euromicro Conference on Digital System Design (DSD).

[2]  M. Ottavi,et al.  Clocking and Cell Placement for QCA , 2006, 2006 Sixth IEEE Conference on Nanotechnology.

[3]  Rolf Drechsler,et al.  Exploration of the Synchronization Constraint in Quantum-dot Cellular Automata , 2018, 2018 21st Euromicro Conference on Digital System Design (DSD).

[4]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[5]  Sanjukta Bhanja,et al.  Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives , 2014 .

[6]  Giovanni De Micheli,et al.  The EPFL Logic Synthesis Libraries , 2018, ArXiv.

[7]  Robert Wille,et al.  An exact method for design exploration of quantum-dot cellular automata , 2018, 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[8]  Fabrizio Riente,et al.  Parallel and Serial Computation in Nanomagnet Logic: An Overview , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[9]  Robert Wille,et al.  An Energy-Aware Model for the Logic Synthesis of Quantum-Dot Cellular Automata , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  Omar P. Vilela Neto,et al.  USE: A Universal, Scalable, and Efficient Clocking Scheme for QCA , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[12]  W. Porod,et al.  Edge-Mode Resonance-Assisted Switching of Nanomagnet Logic Elements , 2015, IEEE Transactions on Magnetics.

[13]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[14]  Robert Wille,et al.  Synchronization of Clocked Field-Coupled Circuits , 2018, 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO).

[15]  Robert Wille,et al.  Placement and Routing for Tile-based Field-coupled Nanocomputing Circuits Is NP-complete (Research Note) , 2019, ACM J. Emerg. Technol. Comput. Syst..

[16]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[17]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[18]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[19]  José Augusto Miranda Nacif,et al.  BANCS: Bidirectional Alternating Nanomagnetic Clocking Scheme , 2018, 2018 31st Symposium on Integrated Circuits and Systems Design (SBCCI).

[20]  Robert A. Wolkow,et al.  Atomic White-Out: Enabling Atomic Circuitry through Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon Surface. , 2017, ACS nano.

[21]  Robert Wille,et al.  Scalable design for field-coupled nanocomputing circuits , 2019, ASP-DAC.

[22]  Michael T. Niemier,et al.  Molecular cellular networks: A non von Neumann architecture for molecular electronics , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[23]  Robert K. Brayton,et al.  ABC: An Academic Industrial-Strength Verification Tool , 2010, CAV.

[24]  Robert A. Wolkow,et al.  Quantum Transport in Gated Dangling-Bond Atomic Wires. , 2017, Nano letters.

[25]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[26]  Frank Sill,et al.  A Methodology for Standard Cell Design for QCA , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[27]  Mahabub Hasan Mahalat,et al.  An efficient clocking scheme for quantum-dot cellular automata , 2020, International Journal of Electronics Letters.

[28]  Robert A. Wolkow,et al.  Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. , 2011, The Journal of chemical physics.