Realization of Superadiabatic Two-Qubit Gates Using Parametric Modulation in Superconducting Circuits

Fast robust two-qubit gate operation with low susceptibility to crosstalk are the key to scalable quantum information processing. Parametrically driven gate is inherently insensitive to crosstalk while superadiabatic control can speed up the gate without losing accuracy. We propose and experimentally implement superadiabatic two-qubit gates using parametric modulation on superconducting quantum circuits. Our results demonstrate the preservation of adiabaticity at a gate speed close to the quantum limit, in addition to robustness against control instability. We demonstrate a CZ gate with error rate of 5.8$\%$, limited largely by qubit decoherence, promising future improvement and scalable implementation.

[1]  Kihwan Kim,et al.  Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space , 2016, Nature Communications.

[2]  Xi Chen,et al.  Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms , 2016, Nature Communications.

[3]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[4]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[5]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[6]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[7]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[8]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[9]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[10]  Tenghui Wang,et al.  Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity , 2017, 1704.00894.

[11]  Proceedings of the Royal Society (London) , 1906, Science.

[12]  M. A. Rol,et al.  Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor , 2019, Applied Physics Letters.

[13]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[14]  Yu-xi Liu,et al.  An efficient and compact switch for quantum circuits , 2018, npj Quantum Information.

[15]  Zhenhai Sun,et al.  Experimental Realization of a Fast Controlled- Z Gate via a Shortcut to Adiabaticity , 2018, Physical Review Applied.

[16]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[17]  P. Alam ‘W’ , 2021, Composites Engineering.

[18]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[19]  Alexandre Blais,et al.  Fast Quantum Nondemolition Readout by Parametric Modulation of Longitudinal Qubit-Oscillator Interaction. , 2015, Physical review letters.

[20]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[21]  Adolfo del Campo,et al.  Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.

[22]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[23]  D. Russell,et al.  Parametrically Activated Entangling Gates Using Transmon Qubits , 2017, Physical Review Applied.

[24]  L Frunzio,et al.  High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity. , 2010, Physical review letters.

[25]  Yu-xi Liu,et al.  Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields , 2014 .

[26]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[27]  Sabrina Hong,et al.  Demonstration of universal parametric entangling gates on a multi-qubit lattice , 2017, Science Advances.

[28]  I. Pop,et al.  Novel E-beam lithography technique for in-situ junction fabrication: the controlled undercut , 2011, 1101.4576.

[29]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[30]  J. Gambetta,et al.  Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.

[31]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[32]  Franco Nori,et al.  Quantum Zeno switch for single-photon coherent transport , 2008, 0812.2151.

[33]  Hui Yan,et al.  Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers , 2016, 1604.07914.

[34]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[35]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[36]  Austin G. Fowler,et al.  High speed flux sampling for tunable superconducting qubits with an embedded cryogenic transducer , 2018, Superconductor Science and Technology.

[37]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[38]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[39]  J. Martinis,et al.  Fast adiabatic qubit gates using only σ z control , 2014, 1402.5467.

[40]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[41]  Xiang‐Bin Wang,et al.  Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields , 2010, 1003.1671.

[42]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[43]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[44]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[45]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[46]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[47]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[48]  Alexandre Blais,et al.  First-order sideband transitions with flux-driven asymmetric transmon qubits , 2013 .

[49]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[50]  Michael V Berry,et al.  Histories of adiabatic quantum transitions , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  Tao Chen,et al.  Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. , 2018, 1806.03886.

[52]  N. Didier,et al.  Analytical modeling of parametrically-modulated transmon qubits , 2017, 1706.06566.

[53]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[54]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.