Protective Coating for the Lithium Metal Anode Prepared by Plasma Polymerization

[1]  J. Sann,et al.  Storage of Lithium Metal: The Role of the Native Passivation Layer for the Anode Interface Resistance in Solid State Batteries , 2021, ACS Applied Energy Materials.

[2]  J. Sann,et al.  In-Depth Characterization of Lithium-Metal Surfaces with XPS and ToF-SIMS: Toward Better Understanding of the Passivation Layer , 2021 .

[3]  M. Rohnke,et al.  Spatially resolved indiffusion behavior of Cu 2+ and Ni 2+ in polypropylene , 2021 .

[4]  Yi Cui,et al.  Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes , 2020 .

[5]  A. Kotarba,et al.  Recent progress on parylene C polymer for biomedical applications: A review , 2020 .

[6]  I. Humar,et al.  Transmission Line Model for Description of the Impedance Response of Li Electrodes with Dendritic Growth , 2019, The Journal of Physical Chemistry C.

[7]  Feng Li,et al.  Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. , 2019, Small.

[8]  R. Pathak,et al.  Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes , 2019, Energy Storage Materials.

[9]  G. Rubloff,et al.  High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes , 2019, Journal of Materials Science.

[10]  K. Vasilev,et al.  Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines , 2019, Materials.

[11]  Seong H. Kim,et al.  Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries. , 2018, ACS nano.

[12]  Linda F. Nazar,et al.  An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal , 2017 .

[13]  A. Jain,et al.  A new synthesis route of ammonia production through hydrolysis of metal - Nitrides , 2017 .

[14]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[15]  Gary W. Rubloff,et al.  Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase , 2017 .

[16]  M. Winter,et al.  Lithium‐Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium‐Metal Batteries , 2017 .

[17]  T. Tao,et al.  Anode Improvement in Rechargeable Lithium–Sulfur Batteries , 2017, Advanced materials.

[18]  G. Rubloff,et al.  ALD Protection of Li‐Metal Anode Surfaces – Quantifying and Preventing Chemical and Electrochemical Corrosion in Organic Solvent , 2016 .

[19]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[20]  Martin Z. Bazant,et al.  Transition of lithium growth mechanisms in liquid electrolytes , 2016 .

[21]  Xiangbo Meng,et al.  Atomic Layer Deposition of LixAlyS Solid‐State Electrolytes for Stabilizing Lithium‐Metal Anodes , 2016 .

[22]  Brian J. Kim,et al.  Micromachining of Parylene C for bioMEMS , 2016 .

[23]  J. Greeley,et al.  First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF. , 2015, ACS applied materials & interfaces.

[24]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[25]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[26]  B. Koel,et al.  Plasma facing surface composition during NSTX Li experiments , 2013 .

[27]  Y. Tai,et al.  Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells , 2012, Biomedical microdevices.

[28]  Bo Lu,et al.  A study of the autofluorescence of parylene materials for microTAS applications. , 2010, Lab on a chip.

[29]  J. Janek,et al.  Surface oxygen exchange between yttria-stabilised zirconia and a low-temperature oxygen rf-plasma , 2004 .

[30]  Dong-Chul Han,et al.  PDMS-based micro PCR chip with Parylene coating , 2003 .

[31]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[32]  Z. Takehara Future prospects of the lithium metal anode , 1997 .

[33]  P. Ross,et al.  The Reaction of Clean Li Surfaces with Small Molecules in Ultrahigh Vacuum II. Water , 1996 .

[34]  K. Yasuda,et al.  Modification of lithium/electrolyte interface by plasma polymerization of 1,1-difluoroethene , 1993 .

[35]  Y. Uchimoto,et al.  Ionically Conductive Thin Polymer Film Prepared by Plasma Polymerization I . Hybrid Film of Plasma Polymer Formed from Octamethylcyclotetrasiloxane, Poly(propylene oxide), and Lithium Perchlorate , 1989 .

[36]  M. Markowitz,et al.  Lithium Metal-Gas Reactions. , 1962 .

[37]  Leonard I. Grossweiner,et al.  The Reaction of Beryllium Oxide with Water Vapor , 1952 .

[38]  Kecheng Jiang,et al.  Multifunctional artificial solid electrolyte interphase layer for lithium metal anode in carbonate electrolyte , 2020 .

[39]  Qiang Zhang,et al.  Review—Li Metal Anode in Working Lithium-Sulfur Batteries , 2018 .

[40]  S. Imai Fabrication of three-dimensional parylene HT diaphragms using D-RIE with a Si substrate , 2017 .

[41]  Ruimin Xu,et al.  A Compact Parylene-Coated WLAN Flexible Antenna for Implantable Electronics , 2016, IEEE Antennas and Wireless Propagation Letters.

[42]  P. Flinn,et al.  Hardness and Modulus Studies on Dielectric Thin Films , 1992 .