THE AGE OF THE DIRECTLY IMAGED PLANET HOST STAR κ ANDROMEDAE DETERMINED FROM INTERFEROMETRIC OBSERVATIONS

$\kappa$ Andromedae, an early type star that hosts a directly imaged low mass companion, is expected to be oblate due to its rapid rotational velocity ($v\sin i$ = $\sim$162 $\mathrm{km~s^{-1}}$). We observed the star with the CHARA Array's optical beam combiner, PAVO, measuring its size at multiple orientations and determining its oblateness. The interferometric measurements, combined with photometry and this $v\sin i$ value are used to constrain an oblate star model that yields the fundamental properties of the star and finds a rotation speed that is $\sim$85\% of the critical rate and a low inclination of $\sim$30$^\circ$. Three modeled properties (the average radius, bolometric luminosity, and equatorial velocity) are compared to MESA evolution models to determine an age and mass for the star. In doing so, we determine an age for the system of 47$^{+27}_{-40}$ Myr. Based on this age and previous measurements of the companion's temperature, the BHAC15 evolution models imply a mass for the companion of 22$^{+8}_{-9}$ M$_\mathrm{J}$.

[1]  H. Zeipel,et al.  The Radiative Equilibrium of a Rotating System of Gaseous Masses , 1924 .

[2]  A. Burrows,et al.  THE DEUTERIUM-BURNING MASS LIMIT FOR BROWN DWARFS AND GIANT PLANETS , 2010, 1008.5150.

[3]  U. Exeter,et al.  A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.

[4]  Timothy D. Brandt,et al.  DIRECT IMAGING DISCOVERY OF A “SUPER-JUPITER” AROUND THE LATE B-TYPE STAR κ And , 2012, 1211.3744.

[5]  Harinder P. Singh,et al.  Coudé-feed stellar spectral library – atmospheric parameters , 2010, 1009.1491.

[6]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[7]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[8]  Timothy D. Brandt,et al.  BAYESIAN AGES FOR EARLY-TYPE STARS FROM ISOCHRONES INCLUDING ROTATION, AND A POSSIBLE OLD AGE FOR THE HYADES , 2015, 1501.04404.

[9]  Inseok Song,et al.  THE TUCANA/HOROLOGIUM, COLUMBA, AB DORADUS, AND ARGUS ASSOCIATIONS: NEW MEMBERS AND DUSTY DEBRIS DISKS , 2011, 1104.0284.

[10]  L. Hillenbrand,et al.  THE AGES OF EARLY-TYPE STARS: STRÖMGREN PHOTOMETRIC METHODS CALIBRATED, VALIDATED, TESTED, AND APPLIED TO HOSTS AND PROSPECTIVE HOSTS OF DIRECTLY IMAGED EXOPLANETS , 2015, 1501.03154.

[11]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[12]  S. T. Ridgway,et al.  First Results from the CHARA Array. II. A Description of the Instrument , 2005 .

[13]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[14]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[15]  On the Galactic Disk Metallicity Distribution from Open Clusters. I. New Catalogs and Abundance Gradient , 2002, astro-ph/0212542.

[16]  R. Wilson,et al.  Catalogue of stellar ultraviolet fluxes : a compilation of absolute stellar fluxes measured by the Sky Survey Telescope (S2/68) aboard the ESRO satellite TD-1 / , 1978 .

[17]  C. Mordasini,et al.  Deuterium burning in objects forming via the core accretion scenario - Brown dwarfs or planets? , 2012, 1210.0538.

[18]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[19]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[20]  Gerard T. van Belle,et al.  Interferometric observations of rapidly rotating stars , 2005, 1204.2572.

[21]  D. Saumon,et al.  DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION , 2013, 1305.0980.

[22]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[23]  D. Massa,et al.  Determining the Physical Properties of the B Stars. II. Calibration of Synthetic Photometry , 2004, astro-ph/0412542.

[24]  S. Ridgway,et al.  THE AGES OF A-STARS. I. INTERFEROMETRIC OBSERVATIONS AND AGE ESTIMATES FOR STARS IN THE URSA MAJOR MOVING GROUP , 2015, 1508.05643.

[25]  Miguel de Val-Borro,et al.  HAT-P-57b: A SHORT-PERIOD GIANT PLANET TRANSITING A BRIGHT RAPIDLY ROTATING A8V STAR CONFIRMED VIA DOPPLER TOMOGRAPHY , 2015, 1510.08839.

[26]  Timothy D. Brandt,et al.  Characterization of the gaseous companion κ Andromedae b - New Keck and LBTI high-contrast observations , 2013, 1308.3859.

[27]  H. Zeipel,et al.  The Radiative Equilibrium of a Slightly Oblate Rotating Star , 1924 .

[28]  A. Boggess,et al.  The IUE spacecraft and instrumentation , 1978, Nature.

[29]  Gautam Vasisht,et al.  THE κ ANDROMEDAE SYSTEM: NEW CONSTRAINTS ON THE COMPANION MASS, SYSTEM AGE, AND FURTHER MULTIPLICITY , 2013, 1309.3372.

[30]  P. L. Knight Progress in Optics , 1988 .

[31]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[32]  I. Paris,et al.  Rotational velocities of A-type stars. III. Velocity distributions , 2006, astro-ph/0610785.

[33]  Peter G. Tuthill,et al.  Sensitive visible interferometry with PAVO , 2008, Astronomical Telescopes + Instrumentation.

[34]  M. Rieutord,et al.  Gravity darkening in rotating stars , 2011, 1109.3038.

[35]  A. Boden Calibrating optical/IR interferometry visibility data , 2007 .