Stochastic wave equations with constraints: well-posedness and Smoluchowski-Kramers diffusion approximation

We investigate the well-posedness of a class of stochastic second-order in time damped evolution equations in Hilbert spaces, subject to the constraint that the solution lie within the unitary sphere. Then, we focus on a specific example, the stochastic damped wave equation in a bounded domain of a $d$-dimensional Euclidean space, endowed with the Dirichlet boundary condition, with the added constraint that the $L^2$-norm of the solution is equal to one. We introduce a small mass $\mu>0$ in front of the second-order derivative in time and examine the validity of a Smoluchowski-Kramers diffusion approximation. We demonstrate that, in the small mass limit, the solution converges to the solution of a stochastic parabolic equation subject to the same constraint. We further show that an extra noise-induced drift emerges, which in fact does not account for the Stratonovich-to-It\^{o} correction term.

[1]  Z. Brzeźniak,et al.  Stochastic constrained Navier–Stokes equations on T2 , 2021 .

[2]  S. Cerrai,et al.  A Smoluchowski–Kramers approximation for an infinite dimensional system with state-dependent damping , 2020, Annals of Probability.

[3]  Z. Brzeźniak,et al.  Global solution of nonlinear stochastic heat equation with solutions in a Hilbert manifold , 2020 .

[4]  B. Goldys,et al.  Large deviations for (1 + 1)-dimensional stochastic geometric wave equation , 2020, Journal of Differential Equations.

[5]  J. Wehr,et al.  An Averaging Approach to the Smoluchowski–Kramers Approximation in the Presence of a Varying Magnetic Field , 2020, 2003.02330.

[6]  Z. Brze'zniak,et al.  Local solution to an energy critical 2-D stochastic wave equation with exponential nonlinearity in a bounded domain , 2019, Journal of Differential Equations.

[7]  S. Cerrai,et al.  On the convergence of stationary solutions in the Smoluchowski-Kramers approximation of infinite dimensional systems , 2018, Journal of Functional Analysis.

[8]  Hung D. Nguyen The Small-Mass Limit and White-Noise Limit of an Infinite Dimensional Generalized Langevin Equation , 2018, 1804.09682.

[9]  M. Salins Smoluchowski–Kramers approximation for the damped stochastic wave equation with multiplicative noise in any spatial dimension , 2018, Stochastics and Partial Differential Equations: Analysis and Computations.

[10]  M. Mariani,et al.  2D Constrained Navier-Stokes Equations , 2016, 1606.08360.

[11]  Scott Hottovy,et al.  Small Mass Limit of a Langevin Equation on a Manifold , 2016, 1604.04819.

[12]  M. Freidlin,et al.  On the Smoluchowski-Kramers approximation for SPDEs and its interplay with large deviations and long time behavior , 2016, 1602.04279.

[13]  David P. Herzog,et al.  The Small-Mass Limit for Langevin Dynamics with Unbounded Coefficients and Positive Friction , 2015, 1510.04187.

[14]  Wenqing Hu,et al.  Hypoelliptic multiscale Langevin diffusions: Large deviations, invariant measures and small mass asymptotics , 2015, 1506.06181.

[15]  M. Freidlin,et al.  Large Deviations for the Langevin Equation with Strong Damping , 2015, 1503.01027.

[16]  J. Wehr,et al.  The Smoluchowski-Kramers Limit of Stochastic Differential Equations with Arbitrary State-Dependent Friction , 2014, 1404.2330.

[17]  Michael Salins,et al.  Smoluchowski-Kramers approximation and large deviations for infinite dimensional gradient systems , 2014, Asymptot. Anal..

[18]  S. Cerrai,et al.  Smoluchowski-Kramers approximation and large deviations for infinite dimensional non-gradient systems with applications to the exit problem , 2014, 1403.5745.

[19]  Jong Jun Lee,et al.  Small mass asymptotics of a charged particle in a variable magnetic field , 2013, Asymptot. Anal..

[20]  Arnaud Debussche,et al.  Degenerate parabolic stochastic partial differential equations: Quasilinear case , 2013, 1309.5817.

[21]  Wenqing Hu,et al.  Smoluchowski–Kramers approximation in the case of variable friction , 2011, 1203.0603.

[22]  Yan Lv,et al.  Averaging approximation to singularly perturbed nonlinear stochastic wave equations , 2011, 1107.4184.

[23]  M. Freidlin,et al.  Small Mass Asymptotics for a Charged Particle in a Magnetic Field and Long-Time Influence of Small Perturbations , 2011 .

[24]  F. Lin,et al.  Nonlocal heat flows preserving the L2 energy , 2008 .

[25]  E. Caglioti,et al.  On a Constrained 2-D Navier-Stokes Equation , 2008, 0807.2203.

[26]  K. Spiliopoulos A NOTE ON THE SMOLUCHOWSKI–KRAMERS APPROXIMATION FOR THE LANGEVIN EQUATION WITH REFLECTION , 2007, 1004.3043.

[27]  Mark Freidlin,et al.  Smoluchowski-Kramers approximation for a general class of SPDEs , 2006 .

[28]  P. Rybka Convergence of a heat flow on a Hilbert manifold , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[29]  Mark Freidlin,et al.  On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom , 2006 .

[30]  Bohdan Maslowski,et al.  Stochastic nonlinear beam equations , 2005 .

[31]  M. Freidlin Some Remarks on the Smoluchowski–Kramers Approximation , 2004 .

[32]  Z. Brzeźniak On stochastic convolution in banach spaces and applications , 1997 .

[33]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[34]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[35]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[36]  W. J. Fisher,et al.  Translated from the French , 1920 .

[37]  Brian Osserman DIFFERENTIAL FORMS , 2005 .

[38]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[39]  Z. Brzeźniak,et al.  Approximations of the Wong–Zakai type for stochastic differential equations in M-type 2 Banach spaces with applications to loop spaces , 2003 .

[40]  Jan Seidler Da Prato-Zabczyk's maximal inequality revisited. I. , 1993 .

[41]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .

[42]  M. Smoluchowski,et al.  Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .