EXACT POSTERIOR SIMULATION FROM THE LINEAR LASSO REGRESSION

The current popular method for approximate simulation from the posterior distribution of the linear Bayesian LASSO is a Gibbs sampler. It is well-known that the output analysis of an MCMC sampler is difficult due to the complex dependence amongst the states of the underlying Markov chain. Practitioners can usually only assess the convergence of MCMC samplers using heuristics. In this paper we construct a method that yields an independent and identically distributed (iid) draws from the LASSO posterior. The advantage of such exact sampling over the MCMC sampling is that there are no difficulties with the output analysis of the exact sampler, because all the simulated states are independent. The proposed sampler works well when the dimension of the parameter space is not too large, and when it is too large to permit exact sampling, the proposed method can still be used to construct an approximate MCMC sampler.

[1]  Peter W. Glynn,et al.  Exact simulation vs exact estimation , 2016, 2016 Winter Simulation Conference (WSC).

[2]  Christian Léger,et al.  Bootstrap confidence intervals for ratios of expectations , 1999, TOMC.

[3]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[4]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[5]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[6]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[7]  Pierre L'Ecuyer,et al.  Splitting Techniques , 2009, Rare Event Simulation using Monte Carlo Methods.

[8]  Dirk P. Kroese,et al.  Efficient Monte Carlo simulation via the generalized splitting method , 2012, Stat. Comput..

[9]  Jan-Kees C. W. van Ommeren,et al.  On the importance function in splitting simulation , 2002, Eur. Trans. Telecommun..

[10]  Zdravko I. Botev,et al.  Efficient probability estimation and simulation of the truncated multivariate student-t distribution , 2015, 2015 Winter Simulation Conference (WSC).

[11]  Z. Botev The normal law under linear restrictions: simulation and estimation via minimax tilting , 2016, 1603.04166.

[12]  Paul Glasserman,et al.  Multilevel Splitting for Estimating Rare Event Probabilities , 1999, Oper. Res..

[13]  Robert E. Shannon,et al.  Design and analysis of simulation experiments , 1978, WSC '78.

[14]  Yasuhiro Yamai,et al.  Value-at-risk versus expected shortfall: A practical perspective , 2005 .

[15]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[16]  Pierre L'Ecuyer,et al.  Simulation from the Normal Distribution Truncated to an Interval in the Tail , 2016, VALUETOOLS.

[17]  Bruno Tuffin,et al.  Splitting for rare-event simulation , 2006, WSC.

[18]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[19]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[20]  Gerardo Rubino,et al.  Static Network Reliability Estimation via Generalized Splitting , 2013, INFORMS J. Comput..

[21]  Bruno Tuffin,et al.  Static Network Reliability Estimation under the Marshall-Olkin Copula , 2015, ACM Trans. Model. Comput. Simul..

[22]  Bruno Tuffin,et al.  Rare events, splitting, and quasi-Monte Carlo , 2007, TOMC.

[23]  James G. Scott,et al.  The Bayesian bridge , 2011, 1109.2279.

[24]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .