Parameter identification of large-scale magnetorheological dampers in a benchmark building platform

Magnetorheological (MR) dampers are devices that can be used for vibration reduction in structures. However, to use these devices in an effective way, a precise modeling is required. In this sense, in this paper we consider a modified parameter identification method of large-scale magnetorheological dampers which are represented using the normalized Bouc-Wen model. The main benefit of the proposed identification algorithm is the accuracy of the parameter estimation. The validation of the parameter identification method has been carried out using a black box model of an MR damper in a smart base-isolated benchmark building. Magnetorheological dampers are used in this numerical platform both as isolation bearings as well as semiactive control devices.

[1]  G. C. Smith,et al.  Frequency-Shaping with Spatial Compensators , 2000 .

[2]  S. Olutunde Oyadiji,et al.  Application of MR damper in structural control using ANFIS method , 2008 .

[3]  Shirley J. Dyke,et al.  Phenomenological Model of a Magnetorheological Damper , 1996 .

[4]  Shirley J. Dyke,et al.  An experimental study of MR dampers for seismic protection , 1998 .

[5]  F. Ikhouane,et al.  Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model , 2007 .

[6]  B. F. Spencer,et al.  STATE OF THE ART OF STRUCTURAL CONTROL , 2003 .

[7]  B. F. Spencer,et al.  Nonlinear blackbox modeling of MR-dampers for civil structural control , 2005, IEEE Transactions on Control Systems Technology.

[8]  Pinqi Xia,et al.  An inverse model of MR damper using optimal neural network and system identification , 2003 .

[9]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[10]  J. David Carlson,et al.  A growing attraction to magnetic fluids , 1994 .

[11]  Jonathan W. Bender,et al.  Properties and Applications of Commercial Magnetorheological Fluids , 1998, Smart Structures.

[12]  Rene Jimenez-Fabian,et al.  Simultaneous state estimation and parameter tuning in a shear building with a magneto‐rheological damper , 2009 .

[13]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[14]  José Rodellar,et al.  Model identification of a large-scale magnetorheological fluid damper , 2009 .

[15]  Erik A. Johnson,et al.  Smart base‐isolated benchmark building. Part I: problem definition , 2006 .

[16]  F. Ikhouane,et al.  Variation of the hysteresis loop with the Bouc–Wen model parameters , 2007 .

[17]  Shirley J. Dyke,et al.  Semiactive Control Strategies for MR Dampers: Comparative Study , 2000 .

[18]  Sergio M. Savaresi,et al.  Identification of semi-physical and black-box non-linear models: the case of MR-dampers for vehicles control , 2005, Autom..

[19]  Ion Stiharu,et al.  Modeling and application of MR dampers in semi-adaptive structures , 2008 .

[20]  Wei-Hsin Liao,et al.  Neural network modeling and controllers for magnetorheological fluid dampers , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[21]  Shirley J. Dyke,et al.  Benchmark Control Problems for Seismically Excited Nonlinear Buildings , 2004 .

[22]  Erik A. Johnson,et al.  Smart base‐isolated benchmark building part IV: Phase II sample controllers for nonlinear isolation systems , 2006 .

[23]  José Rodellar,et al.  Modeling and identification of a small scale magnetorheological damper , 2010, ALCOSP.

[24]  Khanh Pham,et al.  Modeling MR-dampers: a nonlinear blackbox approach , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[25]  Georges Bossis,et al.  Yield behavior of magnetorheological suspensions , 2003 .

[26]  S. Olutunde Oyadiji,et al.  Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions , 2008 .

[27]  Francesc Pozo,et al.  Nonlinear modeling of hysteretic systems with double hysteretic loops using position and acceleration information , 2009 .