Degradation Mechanisms of GaN HEMTs With p-Type Gate Under Forward Gate Bias Overstress

This paper investigates the degradation of GaN-based HEMTs with p-type gate submitted to positive gate bias stress. Based on combined electrical and optical testing, we demonstrate the existence of different degradation processes, depending on the applied stress voltage <inline-formula> <tex-math notation="LaTeX">${V}_{\textsf {Gstress}}$ </tex-math></inline-formula>: 1) for <inline-formula> <tex-math notation="LaTeX">${V}_{\textsf {Gstress}}< \textsf {7}$ </tex-math></inline-formula> V, no significant degradation is observed, thus demonstrating a good stability of the analyzed technology; 2) for 7 V <inline-formula> <tex-math notation="LaTeX">$< {V}_{\textsf {Gstress}} <\textsf {11.5}$ </tex-math></inline-formula> V, a negative shift in threshold voltage (<inline-formula> <tex-math notation="LaTeX">${V}_{\textsf {th}}$ </tex-math></inline-formula>) is observed, well correlated with a decrease in the gate leakage current and of the luminescence signal associated with hole injection. The negative <inline-formula> <tex-math notation="LaTeX">${V}_{\textsf {th}}$ </tex-math></inline-formula> shift is ascribed to the trapping of holes in the AlGaN and/or p-GaN/AlGaN interface; and 3) for <inline-formula> <tex-math notation="LaTeX">${V}_{\textsf {Gstress}} \ge \textsf {12}$ </tex-math></inline-formula> V, threshold voltage recovers its initial value. This is ascribed to a net-negative charge, generated either by the trapping of electrons injected from the 2-D electron gas to the AlGaN or to the de-trapping of the holes injected in 2). The results described within this paper provide relevant information for understanding the degradation dynamics of normally off GaN transistors submitted to extremely high gate voltage levels far beyond maximum use.

[1]  Influence of deep levels on capacitance-voltage characteristics of AlGaN/GaN heterostructures , 2011 .

[2]  Gaudenzio Meneghesso,et al.  Electron and hole-related luminescence processes in gate injection transistors , 2010 .

[3]  Guido Groeseneken,et al.  Forward Bias Gate Breakdown Mechanism in Enhancement-Mode p-GaN Gate AlGaN/GaN High-Electron Mobility Transistors , 2015, IEEE Electron Device Letters.

[4]  Enrico Sangiorgi,et al.  Investigation of the p-GaN Gate Breakdown in Forward-Biased GaN-Based Power HEMTs , 2017, IEEE Electron Device Letters.

[5]  Enrico Sangiorgi,et al.  PBTI in GaN-HEMTs With p-Type Gate: Role of the Aluminum Content on $\Delta V_{\mathrm {TH}}$ and Underlying Degradation Mechanisms , 2018, IEEE Transactions on Electron Devices.

[6]  Gaudenzio Meneghesso,et al.  Time-Dependent Failure of GaN-on-Si Power HEMTs With p-GaN Gate , 2016, IEEE Transactions on Electron Devices.

[7]  Kyu Sang Kim Interface trap of p-type gate integrated AlGaN/GaN heterostructure field effect transistors , 2017 .

[8]  Yung C. Liang,et al.  Phenomenon of Drain Current Instability on p-GaN Gate AlGaN/GaN HEMTs , 2015, IEEE Transactions on Electron Devices.

[9]  Alex Lidow,et al.  GaN-on-Si Power Technology: Devices and Applications , 2017, IEEE Transactions on Electron Devices.

[10]  Tetsuzo Ueda,et al.  1.7 kV/1.0 mΩcm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[11]  Kenichiro Tanaka,et al.  Current-collapse-free operations up to 850 V by GaN-GIT utilizing hole injection from drain , 2015, 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[12]  H. Ishida,et al.  Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation , 2007, IEEE Transactions on Electron Devices.

[13]  Xueyang Li,et al.  Charge trapping related channel modulation instability in P-GaN gate HEMTs , 2016, Microelectron. Reliab..

[14]  Gaudenzio Meneghesso,et al.  Field- and current-driven degradation of GaN-based power HEMTs with p-GaN gate: Dependence on Mg-doping level , 2017, Microelectron. Reliab..