A reversible jump Markov chain Monte Carlo algorithm for analysis of functional neuroimages
暂无分享,去创建一个
Nikolas P. Galatsanos | Yongyi Yang | Stephen C. Strother | Miles N. Wernick | Ana S. Lukic | S. Strother | N. Galatsanos | M. Wernick | Yongyi Yang | A. Lukic
[1] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[2] K J Worsley,et al. An overview and some new developments in the statistical analysis of PET and fMRI data , 1997, Human brain mapping.
[3] Guillaume Stawinski,et al. Reversible jump Markov chain Monte Carlo for Bayesian deconvolution of point sources , 1998, Optics & Photonics.
[4] Karl J. Friston. Imaging neuroscience: principles or maps? , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[5] Christophe Andrieu,et al. Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..
[6] S. Strother,et al. An evaluation of methods for detecting brain activations from PET or fMRI images , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).
[7] C. Robert,et al. Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method , 2000 .
[8] N V Hartvig,et al. Spatial mixture modeling of fMRI data , 2000, Human brain mapping.
[9] Yongyi Yang,et al. A signal-detection approach for analysis of functional neuroimages , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).
[10] Stephen J. Roberts,et al. Minimum-Entropy Data Partitioning Using Reversible Jump Markov Chain Monte Carlo , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[11] Stephen C. Strother,et al. An evaluation of methods for detecting brain activations from functional neuroimages , 2002, Artif. Intell. Medicine.