A constructive algorithm for the Cartan decomposition of SU(2N)
暂无分享,去创建一个
[1] Navin Khaneja,et al. Cartan Decomposition of SU(2^n), Constructive Controllability of Spin systems and Universal Quantum Computing , 2000, quant-ph/0010100.
[2] Michael A. Nielsen,et al. A geometric approach to quantum circuit lower bounds , 2005, Quantum Inf. Comput..
[3] Asok Bose. Dynkin’s method of computing the terms of the Baker–Campbell–Hausdorff series , 1989 .
[4] K. Hammerer,et al. Characterization of nonlocal gates , 2002 .
[5] A. Osterloh,et al. Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.
[6] Stephen S. Bullock. Note on the Khaneja Glaser decomposition , 2004, Quantum Inf. Comput..
[7] Navin Khaneja,et al. Cartan decomposition of SU(2n) and control of spin systems , 2001 .
[8] J. Cirac,et al. Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.
[9] È. Vinberg,et al. Spaces of constant curvature , 1993 .
[10] Igor L. Markov,et al. A Practical Top-down Approach to Quantum Circuit Synthesis , 2004 .
[11] Farrokh Vatan,et al. Realization of a General Three-Qubit Quantum Gate , 2004, quant-ph/0401178.
[12] Matthias W. Reinsch. A simple expression for the terms in the Baker-Campbell-Hausdorff series , 1999 .
[13] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[14] P. Priouret,et al. Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.