A constructive algorithm for the Cartan decomposition of SU(2N)

We present an explicit numerical method to obtain the Cartan-Khaneja-Glaser decomposition of a general element G∊SU(2N) in terms of its “Cartan” and “non-Cartan” components. This effectively factors G in terms of group elements that belong in SU(2n) with n<N, a procedure that can be iterated down to n=2. We show that every step reduces to solving the zeros of a matrix polynomial, obtained by truncation of the Baker-Campbell-Hausdorff formula, numerically. All computational tasks involved are straightforward and the overall truncation errors are well under control.

[1]  Navin Khaneja,et al.  Cartan Decomposition of SU(2^n), Constructive Controllability of Spin systems and Universal Quantum Computing , 2000, quant-ph/0010100.

[2]  Michael A. Nielsen,et al.  A geometric approach to quantum circuit lower bounds , 2005, Quantum Inf. Comput..

[3]  Asok Bose Dynkin’s method of computing the terms of the Baker–Campbell–Hausdorff series , 1989 .

[4]  K. Hammerer,et al.  Characterization of nonlocal gates , 2002 .

[5]  A. Osterloh,et al.  Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.

[6]  Stephen S. Bullock Note on the Khaneja Glaser decomposition , 2004, Quantum Inf. Comput..

[7]  Navin Khaneja,et al.  Cartan decomposition of SU(2n) and control of spin systems , 2001 .

[8]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[9]  È. Vinberg,et al.  Spaces of constant curvature , 1993 .

[10]  Igor L. Markov,et al.  A Practical Top-down Approach to Quantum Circuit Synthesis , 2004 .

[11]  Farrokh Vatan,et al.  Realization of a General Three-Qubit Quantum Gate , 2004, quant-ph/0401178.

[12]  Matthias W. Reinsch A simple expression for the terms in the Baker-Campbell-Hausdorff series , 1999 .

[13]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  P. Priouret,et al.  Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.